
Jini-Grid

BenClifford
Schoolof MathematicalSciences

QueenMary andWestfieldCollege

Supervisors:
ScottTelford,EPCC

Martin Westhead,EPCC

Abstract

Jini is a technologythatallowsnetworksof heterogeneousservicesto organisethemselveswith
little humanintervention. It providesfor fault toleranceandfor theautomatictransferof driver
code,written in Java,whenandwhereit is needed.
Theseabilitieswill beextremelyuseful,if notessential,in a largescaleenvironmentsuchasthe
Grid.
In thisproject,Jini technologyis usedto sharecomputeserversusingthetaskfarmparadigm.
A standardAPI thatall computeserversmustimplementis defined.Four implementationswith
differentcapabilitiesarepresentedaswell asaselectionof clientsandhelperclasses.



2 Intr oduction
Thisprojectaimsto useJini andJava to build asmallprototypeGrid.

The Grid is a conceptthat will provide the ability for a userto usesomehigh performance
computingresourcewithout knowing exactly whereor what it is. Onepartof TheGrid will be
theuseof remotecomputationservers,selectedeitherby theuseror by someautomaticprocess,
basedfor exampleon theamountof freeprocessortimeor oncost.

Taskfarmshavebeenchosenastheexecutionmodelfor thisproject,asthey arequiteindependent
of theunderlyingparallelarchitectureandhencearesuitablefor deploymentover a wide range
of architectures.

Researchhasalreadytakenplacewithin EPCCon taskfarmsin Java, andit is upona previous
EPCC-SSPreportthatI havebasedmy work.[1] ThatprojectimplementedHPT(HitachiParallel
Tasks),aremotelyaccessibletaskfarmsystem,intendedto runJavacodeprimarilyontheHitachi
SR2201usingMPI but alsocapableof runningon otherMPI systemsandon sharedmemory
systems.Oneof theideasbehindthedesignwasthataclientshouldbeableto runwith minimal
codemodificationon a workstationfor initial development,on larger systemsfor testingand
finally on theHitachi machinefor real-world usage.JiniGrid attemptsto extendthis to createa
Grid.

Java providescross-platformcompatibility betweena wide variety of platforms,by providing
abstractionsof commonsystemfacilities such as the file-system,as well as techniquesfor
transferringcodeanddatabetweendisparatesystems.

Jini is acollectionof classesandconceptsthatenablesclientsandservicesrunningonanetwork
to discover eachotherandprovidesstandardprotocolsfor the clientsandservicesto interact
oncethey havedoneso. It makesheavy useof Java featuressuchasobjectserialization,remote
methodinvocation(RMI) andbytecodeportability.

New clientsandserverscanbeaddedto anetwork andthey will automaticallydetecteachother
andbeableto interact,without theneedto install new drivers.

Jini providesmechanismsfor fault tolerance.Programsmustlease resourcesfrom services- if
they dieor aredisconnected,theleasewill eventuallyexpireandtheresourceswill befreed.This
stopsthevariousservices“filling up” with uselessdata.



3 A Standard API
All serversmustprovide a standardAPI, so that they all appearidentical to clients. JiniGrid
servers must provide a serviceobject which implementsthe TaskFarmService interface.
The API classes,storedin the jinigrid.specpackage,are the only classesthat all clients and
serversmusthave in common.

Theserviceobjectwill betransmittedto thelookupserviceandthenonto interestedclientsusing
objectserialization.It shouldpassoncallsto thecomputeserver. It maydo this in any way that
it pleasesto – oftenRMI is usedfor thispurposeasnoexplicit codingis necessary, but theobject
is freeto usewhatevermeansit caresto.

The TaskFarmServiceobject will produceon demandanotherobject which implementsthe
TaskFarminterface(below). Thisprovidesmethodsto runa task,registerto receivenotification
of completedor to finishandfreeresources.

The API also containsclassesto transferbytecodein jar files, carry information about the
capabilitiesof servers suchas the numberof processorsand the libraries that are available,
andto symboliseprogressevents(sent,if required,whena certainnumberof taskshave been
completed).

public interface TaskFarm
{
public Vector runTask(Vector tasks,

Object globalData,
String slaveClass)

throws RemoteException;

public void finish() throws RemoteException;

public EventRegistration trackProgress(long duration,
RemoteEventListener rel, MarshalledObject key,
int reportEvery, boolean sendResults)
throws RemoteException;

}



4 Servers

ServerOne ServerQueue
ServerOne was the first server that I
implemented. It was basedon the HPT
remote compute server code previously
written at EPCC.[1] That codeneededlittle
modification: firstly a wrapper layer was
placedaroundit to convert the JiniGrid API
calls to HPT calls, and secondly, codewas
insertedto registerwith Jini lookup services
at thesametimeasstartingup.
The API of this remoteserver formed the
basis for the JiniGrid API, although was
mademoreabstract.
TheServerusesmessagepassing,eitherwith
MPI or with a multi-threaded100% Java
messagepassingsystem. It can be used
on any architecturethat supportseitherJava
threadsovermultipleprocessorsor MPI.
ThecodeusesthempiJavabindingof Java to
MPI.

ServerQueue takes task farm jobs and
submitstheminto thejob-queueingsystemof
theEPCCLomondservice,to beexecutedby
ServerThread.
It is split into two sections. The main
section,the queuemanager, runspermanent
on Lomond front-end. When it receives a
job requestfrom a client, it storesit on disk
and submitsa Worker job into the Lomond
queueing system. When this Worker is
eventually run, it connectsusing RMI to
the queuemanager, retrievesthe appropriate
job data, spawns ServerThreadto execute
the job, and sendsthe results back to the
queuemanager, which thenforwardsthemto
theclient.
It shouldbe easyto convert this to submit
jobs to anotherqueueingsystemor to usea
differenttaskfarmfor theactualexecutionof
thecode.

ServerThread ServerMeta
ServerThreadis a thread-basedserver. It has
a loweroverheadthanServerOne,but cannot
beusedwherethreadsarenot supportedover
multiple processors(for example, Beowulf
machines).
It handles internal communication using
sharedVectorobjects,oneto sendtasksto the
workersandoneto collecttheresults.
It is considerablymore light-weight than
ServerOne,but can only be usedon JVMs
where threads will be run on multiple
processors,with sharedmemory.

ServerMeta provides a meta-server, that
will take a job and distribute it amongst
other available task farms. To the client,
this appearsexactly like a normal JiniGrid
task-farmserver.
Using this server, the client can take
advantageof all processorsonmany different
machinessimultaneously, even if they have
different architectures and are running
differentserver implementations.
At present, tasks are distributed evenly
betweenall systems,although some form
of metric could determinethe proportions
betweeneachdifferentcomponentsystem.



5 A Jini-Grid Client

ThisFractalViewerproducesa renderingof theMandelbrotsetusingJiniGrid taskfarms.

Thisrenderingis veryeasyto parallelizeasataskfarm:Theplaneto berenderedcanbetrivially
brokenup into smallrectangles,with eachrectanglerenderedasaseparatetask.

As eachtaskis completed,aprogresseventis sentto theclientandtherenderedtile canbedrawn
onscreenimmediately– theonscreenimagegraduallybuildsupover time.

Theusermayhighlightany sectionof theimageandthedisplaywill zoomin to thatregion and
recompute.

Theclient presentsthe userwith a choiceof availablecomputeservers. Theusermay choose
any, or maychooseto usethelocal processor. At any time duringtheuseof theclient, theuser
maychangetheselectedoptionandfrom thenon thenewly selectedserverwill beused.



6 A Grid At EPCC

Client

serverThread

serverMetaberyl

serverOne

bobcat

serverQueue

lomond

serverThread

amber

A smallGrid wasconstructedatEPCCfrom variousmachines.
Two HPCmachinesandtwo normalunix hostsweresetupwith theappropriateserversoftware.
Additionally themetaserverwasrunononeof themachines.

Themachineshave thefollowing specifications:
BOBCAT: Beowulf-class,MPI overEthernet,runningServerOne.
Lomond:SunE3000,sharedmemory, runningServerQueue.
AmberandBeryl: SingleprocessorSunworkstationsrunningServer Thread.

A clientcouldconnectto any of theserversindividually, or couldusethemetaserveronberyl to
combinetogethera totalof 22processorsoverall of themachines.

TheMandelbrotclientof thepreviousslidewasusedto provideavisualindicationof therelative
speedsof eachserver.

References

[1] FernandoElson Mourão. A Middleware Environment for Parallel Java on the Hitachi
SR2201.SSPreport,EdinburghParallelComputingCentre,September1998.


