

From your desktop
... to the cluster

... to the grid

Introduction

● You: hopefully have some computations running
on your desktop PCs

● This module talks about making those
applications run in bigger places.

● bigger places = clusters, grids
● some ideas of parallel and distributed

computing from that perspective – but this is not
a general parallel computing course, nor is it a
general distributed computing course

brief overview of scales

what is a PC?

● the thing you have on your desktop or lap
● 1 ... 4 CPU cores (eg my laptop has 2 cores)

what is a cluster?

● Lots of PC-like machines, stuck together in a
rack

● Additional pieces to make them work together
● UJ Cluster

what is a grid?

● (many different definitions)
● For now: Lots of clusters stuck together
● Additional pieces to make them work together
● Two grids especially relevant to UJ:

– SA national grid
– Open Science Grid

what is parallel?

● Structuring your program so that pieces can run
simultaneously

● This is how to take advantage of multiple CPU
cores.

what is distributed?

● Structuring your program so that pieces can run
in different places.

● Different places:
– different nodes in a cluster
– different sites in a grid

Example application
● Mandlebrot fractal rendering application as an example.

● Graphical rendering of a mathematical function

● You don't need to understand the maths involved

● This is “some scientific application”

mandelbrot

for x=0..1000, y=0..1000
each point (x,y) has colour determined by
function mandel(x,y);

If you don't like maths, close your
eyes now

● mandel(x,y) is computed like this:
● c=x+yi
● iterate z -> z^2 + c
● shade is how many iterations before |z|>2
● http://en.wikipedia.org/wiki/Mandelbrot_set

A0. Mandelbrot on your desktop

we can run the following sequential pseudocode.
Easy to implement in many languages – I used C.

for x=0..1000
for y=0..1000

pixel[x][y]=mandel(x,y);
endfor

endfor

baseline mandelbrot run

● implementation mandel10.c
● took 9m49s (589s) on my MacBook
● time ./mandel10 0 0 1 0.0582
1.99965 200000 1000 1000 32000 >
a.pbm

● This measurement will be used to compare
speedup for the rest of this module.

A1. Your multicore desktop

desktop multicore

● Multicore CPUs – put two CPUs on the same
chip

● increasingly common – eg my laptop has two
cores, cheapest mac laptop I could get

● Trivially: can run two separate sequential
programs at the same time

● But what if we have one program that we want
to use both cores?

● Previous mandelbrot algorithm ran 10^6
computations in sequence.

● In the case of mandelbrot:
– split the loops into two separate executables
– run them independently, one on each CPU core
– join the results when both are finished
– hopefully faster?

parallelised mandelbrot
• for x=0..499
• for y=0..1000
• pixelA[x][y]=mandel(x,y);
• endfor
• endfor
•

• for x=500..1000
• for y=0..1000
• pixelB[x][y]=mandel(x,y);
• endfor
• endfor
•

• pixel=combine(pixelA, pixelB)

parallelised mandelbrot
• for x=0..499
• for y=0..1000
• pixelA[x][y]=mandel(x,y);
• endfor
• endfor
•

• for x=500..1000
• for y=0..1000
• pixelB[x][y]=mandel(x,y);
• endfor
• endfor
•

• pixel=combine(pixelA, pixelB)

timings
● Naively hope it would be twice as fast (because

two CPU cores)
● In reality: duration (walltime) = 6m59s (419s)
● 589/419=1.4x speedup
● faster, but not twice as fast...

– why? in a few slides.

Communication between parallel
components

● Components running in parallel need to
communicate with each other.

● In this mandelbrot example, communicate to:
– tell code which half of the fractal to render
– join the results together in a single picture

Loose file coupling
● Model used here is loose file coupling.
● This is not the best model for single PC

multicore parallelisation, but it is flexible when
moving between different scales.

● Components communicate using files and
commandline parameters

mandelbrot

● mandel 0..499 > left.pgm &
● mandel 500..999 > right.pgm &
● wait
● montage left.pgm right.pgm all.pgm

plot left plot right

montage

right.pgmleft.pgm

$ cat tile-dualcore-1.sh

rm -v tile-*-*.gif
rm -v tile-*-*.pgm

for x in 0 1 ; do
 (for y in 0 1 ; do
 ./mandel5 $x $y 2 0.0582 1.99965 200000 1000 1000 32000 > tile-
$y-$x.pgm
 convert tile-$y-$x.pgm tile-$y-$x.gif
 done) & # launch this iteration in the background
done

wait # wait for all the iterations to finish

montage -tile 2x2 -geometry +0+0 tile-*-*.gif mandel.gif

● ./mandel5 $x $y 4 0.0582 1.99965 200000 1000
1000 32000 > tile-$y-$x.pgm

● $x and $y indicate which of 4 tiles will be
rendered, tile-$y-$x.pgm is output file
containing the image

● when all the tiles exist, we need to combine
them together:

● montage -tile 2x2 -geometry +0+0 tile-*-*.pgm
mandel.gif

timings again
● from before: t(single) = 589s
● wall duration: 6m59s (419s) – 1.4x speedup
● Running these two tiles separately:

– x=0 wall time: 410s
– x=1 wall time: 172s

● max(t(0),t(1)) ~ t(wall) : 410 ~ 419 (5s extra)
● t(0) + t(1) ~ t(single) : 410+172=584 ~ 589
● limited by t(0)
● tile-dualcore-1.sh

Why are 2 chunks not enough?
● Why were 2 chunks not enough when we have

2 CPUs?
● Chunks don't all take the same amount of time

– some take <1s, others take minutes.
● We don't know ahead of time how long each will

take...

Time for each chunk to run, 16 chunk example

1 2 3 4

1 0 1 0 0
2 2 0 1 0
3 102 5 0 1
4 182 126 105 67

X pos
Y pos

timings with n chunks instead of 2
● in this app we can get near to the theoretical limit of 2x fairly easily, but then

doesn't get any faster.

● (plot of n vs time or n vs speedup)

n t (s) speedup
1 589 1
2 419 1.41
4 415 1.42
9 366 1.61

16 329 1.79
36 310 1.9
49 299 1.97
64 296 1.99

256 295 2

problem: different components have
different timings

● in general can't tell ahead of time how long a
component will take to run
– (if you like CS, that is related to The Halting

Problem)
– (for some problems, we can estimate pretty well,

though)

task farm model

● If we have n CPUs, split into n*10 tasks.
● Each CPU starts working on one task. When its

finished, it takes another one.
● If a CPU gets a quick task, it will quickly finish

and move onto the next
● If a CPU gets a slow task, other CPUs will

handle the other tasks.
● If a new CPU becomes available, it will start

performing tasks.

task farm diagram again

time

1

2 3

4 6

5 7 8 9 10

11

1312

13

14

Core 1

Core 2

Even though jobs are of very different duration,
we get fairly even distribution of load.

But... we need enough jobs for this to happen.

other models of computing on a
multicore CPU

● Shared memory parallelism
– one program
– shared memory
– rather than fork two unix processes, fork threads

inside your program, with each thread able to
access the same memory

B. distributing the work

● so how can we use more CPU cores than we have in one desktop machine?

● we can render different tiles of the fractal on different computers

● how?

– we need to co-ordinate so that all the tiles get rendered, and so that we
don't duplicate work

– we need to get all the results into one place so we can assemble them
into a single picture

● Look at two distributed models:

– clusters – distributed computation between PC-like nodes in the same
physical location and under same administration

– grid – distributed computation between clusters widely separated
geographically, under different administrations

C. clusters
Cluster management

nodes

Disks Lots of Worker
Nodes

34

Batch queueing system / local
resource manager

● Different people use different names for the same thing:
– Batch queueing system
– Local resource manager (LRM) in grid-speak

● PBS (Portable batch system) on UJ cluster
● Allocates nodes to jobs so that one job has one CPU

Submitting jobs to PBS with qsub

● qsub command submits a job to PBS

$ qsub
echo hello world
<CTRL-D>
30788.gridvm.grid.uj.ac.za
$ ls STDIN.*30788*
STDIN.e30787 STDIN.o30787
$ cat STDIN.o30787
hello world

30788 is the job
identifer created
by PBS

e is error
o is standard out
STDIN means job
submitted on the
commandline

Watching the queue with qstat

● qstat command shows jobs in the queue
$ qstat
Job id Name User Time Use S Queue
------------------- ---------------- --------------- -------- - -----
30184.gridvm null benc 00:39:35 R batch
30272.gridvm null benc 00:32:11 R batch
30736.gridvm null benc 00:18:00 R batch
30737.gridvm null benc 00:18:09 R batch
30755.gridvm null benc 00:18:25 R batch
30779.gridvm null benc 00:17:08 R batch
30780.gridvm null benc 00:17:06 R batch

job ID corresponds
with ID from qsub

who submitted
the job Time the job has been running

job status:
Q = queued
R = running
C = completed

queue that
the job was
submitted to

shared file system

● This cluster (and many clusters, but not all)
have shared file system.

● We can create a file here on any worker node,
and access it from any other worker node (or
the head nodes)

$ df -h /nfs/data
Filesystem Size Used Avail Use% Mounted on
gridvm:/data 385G 21G 345G 6% /nfs/data

mandelbrot on the cluster
● On the UJ cluster, there are 56 CPU cores. Can we get 56x speedup?

● graphs

● here we can perhaps talk a bit about how application sizes change how
much speedup we can get – eg a 10 minute mandelbrot is probably not
going to get much use out of 100 cores, but a 100 hour mandelbrot probably
can

● plots showing this

● extended app: animation (zoom in from full set to the two pretty pretty
frames that I've found)

implementing mandelbrot on the
cluster

● Divide into tiles (like in multicore case)

● Submit each tile separately using qsub

● Put output tiles on the shared file system

● When all of the tiles are finished (when qstat shows we have no jobs left)
then run the montage command (qsub it or run on login node – probably
better to qsub it; or run montage on my laptop using sshfs?)

● View output on laptop (can use sshfs to get cluster shared fs on my laptop
too)

● TODO: colour tiles by worker node, so can see some worker nodes did only
a small number of expenseive tiles and some did lots of cheap tiles

single-frame timings
● 1 job: compare speed

of cluster node with
speed of my laptop:
697s (actually slower
than my laptop)

● we can get up to
around 17x speedup,
at 14x14 tiles

● not near 56x
theoretical speedup

● overhead dominating
● Try a bigger app...

data for previous slide
sqrt(n) n t speedup

1 1 697 0.85
2 4 458 1.29
4 16 207 2.85

10 100 48 12.27
12 144 39 15.1
13 169 38 15.5
14 196 35 16.83
15 225 37 15.92
16 256 37 15.92
17 289 37 15.92
18 324 41 14.37
20 400 54 10.91
22 484 95 6.2
32 1024 245 2.4

Mandelbrot animation

● Generate an animation of moving around the
mandelbrot space

● Each frame is rendered like we rendered the
static image in earlier sections.

● Stitch all the frames together in sequence to
give an animation.

● multidimensional parameter sweep (more than
the 2 parameters x,y earlier)

mandelbrot animation
implementation

● one task = one tile of one frame
● parameters that vary are x,y,zoom (and

perhaps others)
● tasks to join tiles into frames
● one final task to join frames into an animation
● same pattern as tiled rendering; common

pattern: apply same operation to lots of data,
then one final operation to combine results

Some animation statistics
● I ran this with 840 frames – using all 56 cluster

cores for most of the run, 15000s = 4.2 hours

problem: we have varying numbers
of CPUs available

● start computation on cluster. only 10 CPUs
available because someone else is running a
big job

● so perhaps we split job into 10 components and
start them running.

● now that other persons big job finishes, and 50
more CPUs are available. (chart of CPU use –
time x CPUs coloured green for us, and red for
them and white for empty)

● we can't use those newly freed CPUs

task farm diagram again

time

C
P

U
s

1

2 3

4 5

6 7 8

OTHER USERS JOBS

9

10

12

1313

14

OTHER USERS JOBS

15

16

OTHER USERS JOBS

OTHER USERS JOBS

17

11

Other cluster programming models

● MPI – Message Passing Interface
– very common

● PVM – Parallel Virtual Machine

change in the way of doing science:
run taking a few seconds

● When a run takes a few seconds to run, we can
interact with the computation very differently –
explore parameter space much more rapidly, try
out new algorithms, etc – 100s of times per
hour, perhaps, compared to 6 per hour.

● Pretty much interactive exploration, rather than
starting a run and getting distracted over the
next 10 minutes.

think

● Something to think about for your applications:
● what kinds of shift can you make like this?
● example:

– drug testing – in-silico testing of entire drug
database against new diseases

D. The grid

● Introduction talked about the Open Science
Grid

● Later modules will talk about that and grids in
general in much more depth

● 'grid' is a nebulous term, but for this particular
module:
– a collection of clusters spread around the place, all

owned by different people

Running on the grid

● In some respects similar to running on a local
cluster

● But in other respects, very different
– fault tolerance
– application installation
– security
– high network latency and low network bandwidth
– scheduling and site selection

fault tolerance
● something *will* break
● cannot avoid faults, so need to tolerate them
● one of the causes of 'brittle' systems is the

assumption that probably everything will work, and
that it is unusual for something to break.

● in cluster case, worker nodes can go wrong
sometimes. in grid case, all cluster problems plus
more – network failures and site failures.
something somewhere is always broken somehow

application installation

● On cluster, because heterogeneous workers
and usually a shared fs, relatively easy to install
complex apps once and use from all workers

● On grid, need to do per site. Lots of effort.
Approach from two directions:
– using common packages like R, a VO software

team maintains R on many sites, for many users to
use. (get someone else to deploy your software)

– write your codes using more commonly available
software/libraries, and statically link (write your
software so it does not need complex deployment)

security
● How can I prove that I am allowed to use a

resource?
● How can I stop people seeing or changing my

data in transit?

network characteristics

● Within a cluster, usually have quite fast network
connection between all of the components –
they all sit in a rack together and have ethernet
connecting them

● On grid, sites have wide area links that are
typically:
– high latency
– low bandwidth

● This significantly changes application
performance characteristics

Mandelbrot on Open Science Grid
● I ran the same 840 frame animation on both the UJ cluster

and the Open Science Grid
● 5 sites (these were the ones that worked straight away

without me trying very hard - ~30 were available in total)
● peak of 160 cores at once (could go much higher, but my

runs were made cautiously)

Think...

● How can your apps grow from cluster scale to
grid scale?

Review: scaling up
● single core PC

– no synchronisation necessary, only one component so no connections,
you own everything – no sharing. 10^0 cores. good for small apps, 10^0
CPU hours

● multicore PC

– shared memory, shared fs, components connected closely, you own
everything – no sharing. 2*10^0

● cluster

– no shared memory, often (but not always) a shared filesystem,
components connected by local area network (100mbit...10gbit).
components are multicore PCs. you share access with others nearby. all
nodes configured the same. 10^2..10^3 of cores. apps: 10^3 CPU hours

● grid

– no shared fs, components are connected by wide area network (high
latency, low bandwidth, expensive). you share access with large
numbers of people. different sites configured very differently. 10^4 cores
(or ^5? what are latest OSG/SANG/TG stats?)

● fin

def/concept
● parallel
● should point out differences between the

parallel stuff here (which is fairly loosely
coupled) vs MPI-style tightly coupled computing

● differences in ease of programming – high
concurrency is very hard to think about. but can
achieve more.

def/concept

● distributed

def/concept: metrics

● walltime
● CPU-time (CPU-hours)

– time it takes to run on a single core
– number of hours used on all cores added together

● speedup = w/c
● or perhaps...
● speed = walltime(cluster) / walltime(single)

– where the single time is the best single-core
algorithm, rather than the same algorithm as the
cluster...

def/concept: checkpointing

● not too much depth here, but put in somewhere
near fault tolerance

why no shared fs on grid?

● large scale shared fs exists (for example, AFS)
● but performance poor
● even on large clusters, it can be hard to get a

decent performing shared fs
●

● (perhaps this belongs in a different slide?)

