
  

From your desktop
... to the cluster

... to the grid



  

Introduction

● You: hopefully have some computations running 
on your desktop PCs

● This module talks about making those 
applications run in bigger places.

● bigger places = clusters, grids
● some ideas of parallel and distributed 

computing from that perspective – but this is not 
a general parallel computing course, nor is it a 
general distributed computing course



  

brief overview of scales



  

what is a PC?

● the thing you have on your desktop or lap
● 1 ... 4 CPU cores (eg my laptop has 2 cores)



  

what is a cluster?

● Lots of PC-like machines, stuck together in a 
rack

● Additional pieces to make them work together
● UJ Cluster



  

what is a grid?

● (many different definitions)
● For now: Lots of clusters stuck together
● Additional pieces to make them work together
● Two grids especially relevant to UJ:

– SA national grid
– Open Science Grid



  

what is parallel?

● Structuring your program so that pieces can run 
simultaneously

● This is how to take advantage of multiple CPU 
cores.



  

what is distributed?

● Structuring your program so that pieces can run 
in different places.

● Different places:
– different nodes in a cluster
– different sites in a grid



  

Example application
● Mandlebrot fractal rendering application as an example.

● Graphical rendering of a mathematical function

● You don't need to understand the maths involved

● This is “some scientific application”



  

mandelbrot

for x=0..1000, y=0..1000
each point (x,y) has colour determined by  
function mandel(x,y);



  

If you don't like maths, close your 
eyes now

● mandel(x,y) is computed like this:
● c=x+yi
● iterate z -> z^2 + c
● shade is how many iterations before |z|>2
● http://en.wikipedia.org/wiki/Mandelbrot_set



  

A0. Mandelbrot on your desktop

we can run the following sequential pseudocode. 
Easy to implement in many languages – I used C.

for x=0..1000
for y=0..1000

pixel[x][y]=mandel(x,y);
endfor

endfor



  

baseline mandelbrot run

● implementation mandel10.c
● took 9m49s (589s) on my MacBook
● time ./mandel10 0 0 1 0.0582 
1.99965 200000  1000 1000 32000 > 
a.pbm

● This measurement will be used to compare 
speedup for the rest of this module.



  

A1. Your multicore desktop



  

desktop multicore

● Multicore CPUs – put two CPUs on the same 
chip

● increasingly common – eg my laptop has two 
cores, cheapest mac laptop I could get

● Trivially: can run two separate sequential 
programs at the same time

● But what if we have one program that we want 
to use both cores?



  

● Previous mandelbrot algorithm ran 10^6 
computations in sequence.

● In the case of mandelbrot:
– split the loops into two separate executables
– run them independently, one on each CPU core
– join the results when both are finished
– hopefully faster?



  

parallelised mandelbrot
• for x=0..499
• for y=0..1000
• pixelA[x][y]=mandel(x,y);
• endfor
• endfor
•

• for x=500..1000
• for y=0..1000
• pixelB[x][y]=mandel(x,y);
• endfor
• endfor
•

• pixel=combine(pixelA, pixelB)



  



  

parallelised mandelbrot
• for x=0..499
• for y=0..1000
• pixelA[x][y]=mandel(x,y);
• endfor
• endfor
•

• for x=500..1000
• for y=0..1000
• pixelB[x][y]=mandel(x,y);
• endfor
• endfor
•

• pixel=combine(pixelA, pixelB)



  

timings
● Naively hope it would be twice as fast (because 

two CPU cores)
● In reality: duration (walltime) = 6m59s (419s)
● 589/419=1.4x speedup
● faster, but not twice as fast...

– why? in a few slides.



  

Communication between parallel 
components

● Components running in parallel need to 
communicate with each other.

● In this mandelbrot example, communicate to:
– tell code which half of the fractal to render
– join the results together in a single picture



  

Loose file coupling
● Model used here is loose file coupling.
● This is not the best model for single PC 

multicore parallelisation, but it is flexible when 
moving between different scales.

● Components communicate using files and 
commandline parameters



  

mandelbrot

● mandel 0..499 > left.pgm &
● mandel 500..999 > right.pgm &
● wait
● montage left.pgm right.pgm all.pgm

plot left plot right

montage

right.pgmleft.pgm



  

$ cat tile-dualcore-1.sh 

rm -v tile-*-*.gif
rm -v tile-*-*.pgm

for x in 0 1 ; do
 ( for y in 0 1 ; do
   ./mandel5 $x $y 2 0.0582 1.99965 200000 1000 1000 32000 > tile-
$y-$x.pgm 
   convert tile-$y-$x.pgm tile-$y-$x.gif
  done ) &      # launch this iteration in the background
done

wait            # wait for all the iterations to finish

montage -tile 2x2 -geometry +0+0 tile-*-*.gif mandel.gif



  

● ./mandel5 $x $y 4 0.0582 1.99965 200000 1000 
1000 32000 > tile-$y-$x.pgm 

● $x and $y indicate which of 4 tiles will be 
rendered, tile-$y-$x.pgm is output file 
containing the image

● when all the tiles exist, we need to combine 
them together:

● montage -tile 2x2 -geometry +0+0 tile-*-*.pgm 
mandel.gif



  

timings again
● from before: t(single) = 589s
● wall duration: 6m59s (419s) – 1.4x speedup
● Running these two tiles separately:

– x=0 wall time: 410s
– x=1 wall time: 172s

● max(t(0),t(1)) ~ t(wall) : 410 ~ 419 (5s extra) 
● t(0) + t(1) ~ t(single) : 410+172=584 ~ 589
● limited by t(0)
● tile-dualcore-1.sh



  

Why are 2 chunks not enough?
● Why were 2 chunks not enough when we have 

2 CPUs?
● Chunks don't all take the same amount of time 

– some take <1s, others take minutes.
● We don't know ahead of time how long each will 

take...

Time for each chunk to run, 16 chunk example

1 2 3 4

1 0 1 0 0
2 2 0 1 0
3 102 5 0 1
4 182 126 105 67

X pos
Y pos



  

timings with n chunks instead of 2
● in this app we can get near to the theoretical limit of 2x fairly easily, but then 

doesn't get any faster.

● (plot of n vs time or n vs speedup)

n t (s) speedup
1 589 1
2 419 1.41
4 415 1.42
9 366 1.61

16 329 1.79
36 310 1.9
49 299 1.97
64 296 1.99

256 295 2



  

problem: different components have 
different timings

● in general can't tell ahead of time how long a 
component will take to run
– (if you like CS, that is related to The Halting 

Problem)
– (for some problems, we can estimate pretty well, 

though)



  

task farm model

● If we have n CPUs, split into n*10 tasks.
● Each CPU starts working on one task. When its 

finished, it takes another one.
● If a CPU gets a quick task, it will quickly finish 

and move onto the next
● If a CPU gets a slow task, other CPUs will 

handle the other tasks.
● If a new CPU becomes available, it will start 

performing tasks.



  

task farm diagram again
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Even though jobs are of very different duration, 
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But... we need enough jobs for this to happen.



  

other models of computing on a 
multicore CPU

● Shared memory parallelism
– one program
– shared memory
– rather than fork two unix processes, fork threads 

inside your program, with each thread able to 
access the same memory



  

B. distributing the work

● so how can we use more CPU cores than we have in one desktop machine?

● we can render different tiles of the fractal on different computers

● how?

– we need to co-ordinate so that all the tiles get rendered, and so that we 
don't duplicate work

– we need to get all the results into one place so we can assemble them 
into a single picture

● Look at two distributed models:

– clusters – distributed computation between PC-like nodes in the same 
physical location and under same administration

– grid – distributed computation between clusters widely separated 
geographically, under different administrations



C. clusters
Cluster management 

nodes

Disks Lots of Worker 
Nodes

34



  

Batch queueing system / local 
resource manager

● Different people use different names for the same thing:
– Batch queueing system
– Local resource manager (LRM) in grid-speak

● PBS (Portable batch system) on UJ cluster
● Allocates nodes to jobs so that one job has one CPU



  

Submitting jobs to PBS with qsub

● qsub command submits a job to PBS

$ qsub
echo hello world
<CTRL-D>
30788.gridvm.grid.uj.ac.za
$ ls STDIN.*30788*
STDIN.e30787  STDIN.o30787
$ cat STDIN.o30787
hello world

30788 is the job 
identifer created 
by PBS

e is error
o is standard out
STDIN means job 
submitted on the 
commandline



  

Watching the queue with qstat

● qstat command shows jobs in the queue
$ qstat
Job id              Name             User            Time Use S Queue
------------------- ---------------- --------------- -------- - -----
30184.gridvm        null             benc            00:39:35 R batch          
30272.gridvm        null             benc            00:32:11 R batch          
30736.gridvm        null             benc            00:18:00 R batch          
30737.gridvm        null             benc            00:18:09 R batch          
30755.gridvm        null             benc            00:18:25 R batch          
30779.gridvm        null             benc            00:17:08 R batch          
30780.gridvm        null             benc            00:17:06 R batch  

job ID corresponds
with ID from qsub

who submitted
the job Time the job has been running

job status:
Q = queued
R = running
C = completed

queue that 
the job was 
submitted to



  

shared file system

● This cluster (and many clusters, but not all) 
have shared file system.

● We can create a file here on any worker node, 
and access it from any other worker node (or 
the head nodes)

$ df -h /nfs/data
Filesystem            Size  Used Avail Use% Mounted on
gridvm:/data          385G   21G  345G   6% /nfs/data



  

mandelbrot on the cluster
● On the UJ cluster, there are 56 CPU cores. Can we get 56x speedup?

● graphs

● here we can perhaps talk a bit about how application sizes change how 
much speedup we can get – eg a 10 minute mandelbrot is probably not 
going to get much use out of 100 cores, but a 100 hour mandelbrot probably 
can

● plots showing this

● extended app: animation (zoom in from full set to the two pretty pretty 
frames that I've found)



  

implementing mandelbrot on the 
cluster

● Divide into tiles (like in multicore case)

● Submit each tile separately using qsub

● Put output tiles on the shared file system

● When all of the tiles are finished (when qstat shows we have no jobs left) 
then run the montage command (qsub it or run on login node – probably 
better to qsub it; or run montage on my laptop using sshfs?)

● View output on laptop (can use sshfs to get cluster shared fs on my laptop 
too)

● TODO: colour tiles by worker node, so can see some worker nodes did only 
a small number of expenseive tiles and some did lots of cheap tiles



  

single-frame timings
● 1 job: compare speed 

of cluster node with 
speed of my laptop: 
697s (actually slower 
than my laptop)

● we can get up to 
around 17x speedup, 
at 14x14 tiles

● not near 56x 
theoretical speedup

● overhead dominating
● Try a bigger app...



  

data for previous slide
sqrt(n) n t speedup

1 1 697 0.85
2 4 458 1.29
4 16 207 2.85

10 100 48 12.27
12 144 39 15.1
13 169 38 15.5
14 196 35 16.83
15 225 37 15.92
16 256 37 15.92
17 289 37 15.92
18 324 41 14.37
20 400 54 10.91
22 484 95 6.2
32 1024 245 2.4



  

Mandelbrot animation

● Generate an animation of moving around the 
mandelbrot space

● Each frame is rendered like we rendered the 
static image in earlier sections.

● Stitch all the frames together in sequence to 
give an animation.

● multidimensional parameter sweep (more than 
the 2 parameters x,y earlier)



  

mandelbrot animation 
implementation

● one task = one tile of one frame
● parameters that vary are x,y,zoom (and 

perhaps others)
● tasks to join tiles into frames
● one final task to join frames into an animation
● same pattern as tiled rendering; common 

pattern: apply same operation to lots of data, 
then one final operation to combine results



  

Some animation statistics
● I ran this with 840 frames – using all 56 cluster 

cores for most of the run, 15000s = 4.2 hours



  

problem: we have varying numbers 
of CPUs available

● start computation on cluster. only 10 CPUs 
available because someone else is running a 
big job

● so perhaps we split job into 10 components and 
start them running.

● now that other persons big job finishes, and 50 
more CPUs are available. (chart of CPU use – 
time x CPUs coloured green for us, and red for 
them and white for empty)

● we can't use those newly freed CPUs



  

task farm diagram again
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Other cluster programming models

● MPI – Message Passing Interface
– very common

● PVM – Parallel Virtual Machine



  

change in the way of doing science:
run taking a few seconds

● When a run takes a few seconds to run, we can 
interact with the computation very differently – 
explore parameter space much more rapidly, try 
out new algorithms, etc – 100s of times per 
hour, perhaps, compared to 6 per hour.

● Pretty much interactive exploration, rather than 
starting a run and getting distracted over the 
next 10 minutes.



  

think

● Something to think about for your applications:
● what kinds of shift can you make like this?
● example:

– drug testing – in-silico testing of entire drug 
database against new diseases



  

D. The grid

● Introduction talked about the Open Science 
Grid

● Later modules will talk about that and grids in 
general in much more depth

● 'grid' is a nebulous term, but for this particular 
module:
– a collection of clusters spread around the place, all 

owned by different people



  

Running on the grid

● In some respects similar to running on a local 
cluster

● But in other respects, very different
– fault tolerance
– application installation
– security
– high network latency and low network bandwidth
– scheduling and site selection



  

fault tolerance
● something *will* break
● cannot avoid faults, so need to tolerate them
● one of the causes of 'brittle' systems is the 

assumption that probably everything will work, and 
that it is unusual for something to break.

● in cluster case, worker nodes can go wrong 
sometimes. in grid case, all cluster problems plus 
more – network failures and site failures. 
something somewhere is always broken somehow



  

application installation

● On cluster, because heterogeneous workers 
and usually a shared fs, relatively easy to install 
complex apps once and use from all workers

● On grid, need to do per site. Lots of effort. 
Approach from two directions:
– using common packages like R, a VO software 

team maintains R on many sites, for many users to 
use. (get someone else to deploy your software)

– write your codes using more commonly available 
software/libraries, and statically link (write your 
software so it does not need complex deployment)



  

security
● How can I prove that I am allowed to use a 

resource?
● How can I stop people seeing or changing my 

data in transit?



  

network characteristics

● Within a cluster, usually have quite fast network 
connection between all of the components – 
they all sit in a rack together and have ethernet 
connecting them

● On grid, sites have wide area links that are 
typically:
– high latency
– low bandwidth

● This significantly changes application 
performance characteristics



  

Mandelbrot on Open Science Grid
● I ran the same 840 frame animation on both the UJ cluster 

and the Open Science Grid
● 5 sites (these were the ones that worked straight away 

without me trying very hard - ~30 were available in total) 
● peak of 160 cores at once (could go much higher, but my 

runs were made cautiously)



  

Think...

● How can your apps grow from cluster scale to 
grid scale?



  

Review: scaling up
● single core PC

– no synchronisation necessary, only one component so no connections, 
you own everything – no sharing. 10^0 cores. good for small apps, 10^0 
CPU hours

● multicore PC

– shared memory, shared fs, components connected closely, you own 
everything – no sharing. 2*10^0

● cluster

– no shared memory, often (but not always) a shared filesystem, 
components connected by local area network (100mbit...10gbit). 
components are multicore PCs. you share access with others nearby. all 
nodes configured the same. 10^2..10^3 of cores. apps: 10^3 CPU hours

● grid

– no shared fs, components are connected by wide area network (high 
latency, low bandwidth, expensive). you share access with large 
numbers of people. different sites configured very differently. 10^4 cores 
(or ^5? what are latest OSG/SANG/TG stats?)



  

● fin



  

def/concept
● parallel
● should point out differences between the 

parallel stuff here (which is fairly loosely 
coupled) vs MPI-style tightly coupled computing

● differences in ease of programming – high 
concurrency is very hard to think about. but can 
achieve more.



  

def/concept

● distributed



  

def/concept: metrics

● walltime
● CPU-time (CPU-hours)

– time it takes to run on a single core
– number of hours used on all cores added together

● speedup = w/c
● or perhaps...
● speed = walltime(cluster) / walltime(single)

– where the single time is the best single-core 
algorithm, rather than the same algorithm as the 
cluster...



  

def/concept: checkpointing

● not too much depth here, but put in somewhere 
near fault tolerance



  

why no shared fs on grid?

● large scale shared fs exists (for example, AFS)
● but performance poor
● even on large clusters, it can be hard to get a 

decent performing shared fs
●

● (perhaps this belongs in a different slide?)


