Swift vs OPM Collections

Ben Clifford, benc@hawaga.org.uk

April 7, 2010

This note contrasts OPM collections as proposed in
[OC] with similar collections present in Swift. First,
there is a brief overview of collections in OPM and
Swift. Secondly each part of the OPM proposal (sec-
tion 4 of [OC]) is compared to Swift. Thirdly, some is-
sues to do with arrays, mappers and the OPM model
of time are discussed.

This note makes no attempt to be an introduction
to OPM, OPM collections or Swift, and other sources
should be consulted for such material.

1 Swift collections

Swift refers to all data through a DSHandle, which
is close (though not identical) to an OPM artifact.
Basic data types are represented as DSHandles that
refer to files on disk or to in-memory data such as
integers.

DSHandles can represent collections of other
DSHandles. Two forms are provided for this: struc-
tures (what these are actually called has always been
a little ambiguous) and arrays. These are analogous
to structs and arrays in C: a struct contains a prede-
fined number of DSHandles referenced by name, and
the type of each of those named members is known
statically (i.e. at compile time); arrays contain an
arbitrary number of DSHandles referenced by an in-
teger index, and the type of each element is the same.
The syntax used to define and refer to structures and
arrays is reminiscent of C: data.x for structures, and
a[5] for arrays.

Swift collections are immutable: a particular mem-
ber has only a single value, and so a reference to a
particular member is unambiguous. However, collec-
tions are constructed over time.

2 OPM collections

The OPM definition of collections has a different feel,
as it is naturally centered around provenance. The
following sections will address each part of the pro-
posal with respect to Swift collections.

3 Collections and artifacts

(4.1)

Broadly speaking, a Swift DSHandle maps to an
OPM artifact, whether for collection artifacts or
for contained artifacts. There are some differences,
which are discussed in the following sections.

4 Structural level (4.2)

[OC] proposes a Contained relation between two arti-
facts, indicating that one is contained within another.
This maps relatively cleanly to Swift’s in-memory
model of DSHandles containing other DSHandles,
whether in structs or arrays, although some issues
with aliasing arise, as discussed in the next section.
Swift collections may be hierarchical. [OC] does
not specify if the Contained relation holds only one
level deep or to all elements contained in a collection.
The Contained relation as described in [OC] does
not have any annotations. In Swift, there is always an
explicit path (a structure member name, or an array
index, or for deep nesting a sequence of those) from
a collection to its members, and that path might be
placed an annotation on the contained relation.



5 Constructor and

level (4.3)

accessor

[OC] proposes two types of processes: constructors
and accessors. Constructors derive collection arti-
facts from artifacts representing members of those
collections. Conversely, accessors derive artifacts rep-
resenting (some or all) members from the correspond-
ing collection artifact.

Note that an artifact retrieved from a collection is
never the same artifact that went into the constructor
for that collection. This reflects the provenance ori-
ented view that, although the underlying data may
be the same, there may be additional provenance (for
example, the choice of that particular data). This is
discussed further in section 8

In the present Swift implementation, a DSHan-
dle returned from a collection accessor is the same
DSHandle used to construct that accessor. Whilst
this is sufficient for providing access to the relevant
data at runtime, it is unsufficient for describing the
provenance of collection accesses. A suggested mod-
ification to Swift is to create new DSHandles on col-
lection access, rather than returning existing DSHan-
dles.

6 Communication level (4.4)

[OC] proposes a relation WasCopyOf between arti-
facts that indicates that one artifact is a copy of an-
other artifact (perhaps at a different location). At
the SwiftScript level, data transfer is never explic-
itly expressed, and happens at a lower level than the
Swift provenance work has attempted to document.
Thus the relations between artifacts described in this
section are irrelevant to Swift.

7 Operation level (4.5)

[OC] proposes a relation WasMappedFrom between
two collections, indicating that for each element in
the ’destination’ collection has been derived by some
process applied to a corresponding element of the
"source’ collection.

This relation fits in extremely well with the spirit
of Swift, where one of the basic use cases is to apply
the same operation to a very large number of input
data files. However, it does not correspond well to the
semantics of the SwiftScript language, and it is not
straightforward to express WasMappedFrom given a
SwiftScript code fragment implementing that map.
This is a weakness in SwiftScript. For other reasons,
I've suggested implementing map-like control struc-
tures, and WasMappedFrom is in line with those.

8 Array References

When an artifact is placed into a collection, or ac-
cessed from that collection, that access can be anno-
tated with the position in the collection. In the case
of a structure, this annotation is the member name.
In the case of an array, this annotation is the array
index.

These two annotations differ superficially in their
type - one is a SwiftScript identifier, a string; the
other is an integer. However there is a more fun-
damental difference: structure references are static,
in the sense that the identifier is hard-coded into a
SwiftScript program: the SwiftScript program frag-
ment s.left refers to the left element of the col-
lection s, and this can be observed by inspection of
the source code. But array references can be dynam-
ically constructed at runtime. It is not possible by
source code inspection to determine which element is
being accessed by a[i]. Instead, i is itself a DSHan-
dle (or artifact) with its own provenance, and that
provenance is relevant to any further process which
takes a[i] as input.

How, then, does OPM represent the provenance of
this index when accessing an array? Two approaches
spring to mind: firstly, that annotations in general
can have provenance (for example, by annotations
being artifacts in their own right); and secondly that
a different kind of accessor, which is uses not only a
collection artifact (as for the present [OC]), but also
another artifact representing the index. It is not clear
to me what the (dis)advantages of each approach are,
from the perspective of accessing arrays.

More confusingly, though, is the case of array con-



struction. In Swift, this happens piecewise:
alil=3; aljl=10;

In this situation, I think I favour the first of the above
approaches: a single constructor process constructs
the array, with annotations on each ’uses’ relation
indicating the runtime values of i and j, and with
those annotations having provenance.

In practice with SwiftScript, its very common to
assign arrays using a dynamically constructed in-
dex (where that index is coming from some enclos-
ing foreach loop), but the higher level concept being
expressed is often simpler - for example, a map as
described in section 7.

9 Mappers and filenames

In Swift, mappers define both where data will be
stored, and in the case of input collections what data
will be in those collections. Every DSHandle that
represents out of core data has a filename (or more
generally a URI) which describes where that data will
be stored.

Mappers are supplied with parameters, which may
be dynamically computed. Thus, like array refer-
ences, what starts as a simple annotation now has
provenance to be recorded.

For input collections, mappers look very like con-
structors: they use a set of existing artifacts to pro-
duce a collection artifact. But what about collections
that are generated by a Swift program? How does the
mapper fit into the provenance graph here? Its not
at all clear to me...

10 Time

Collections in Swift are constructed over time but
result in a single collection artifact representing the
final state of that collection.

A partially constructed collection can never be ob-
served by a SwiftScript program - when Swift at-
tempts to evaluate an expression referring to part of
a collection that does not exist, evaluation is defer-
ring until that part does exist. That is fundamental
to Swift’s execution model.

Parts of a collection may be used before the con-
struction of an entire collection is complete. That
again is fairly fundamental.

The collection artifact is integral here:

al[i]l=10;
o=f(aljl);

If i==j then the above two statements can both run
without the collection a being fully constructed; but
there is an array accessor that uses a

How does this interact with the OPM time model?
OPM 1.1 makes places certain requirements on the
time annotations for processes and artifacts that
might not map well to the Swift provenance model.

A collection artifact is constructed by a constructor
process. In Swift, such a process is implicit and not
related to a single language statement, (although in
a tighter language specification it might be, but this
situation still exists).

Consider the creation of a 2-element collection,
where the first element is used before the second el-
ement is created: (forgive the formatting - graphviz
would do a much better job)

il and i2 are artifacts.

C is the constructor

c is the collection

A is the accessor

al is the accessed version of il

il <- used <- C (t1)
i2 <- used <- C (t2)
C <- generatedBy <- c (t3)
c <- used <- A (t4)
A <- generatedBy <- al (tb)

OPMv1.1 specifies the constraint that an artifact
must exist before being used, that t3<t4, and so that
the constructor process must have generated the col-
lection before the accessor process can use it. This
suggests that in Swift, the collection should have a
generation time of approximately when we place the
first object in it.

In our example, i2 is generated (by circum-
stances of fate rather than explicit instruction in a
SwiftScript program) after al has been used.



So now, the constructor uses i2 after it has gener-
ated c.

This matches the rules of OPM times. But it feels
like a violation of the spirit.

Please discuss...?

11 Exposing the dynamic be-
haviour of collection con-
struction

The previous sections describe one particular repre-
sentation of collections in Swift that is aligned with
the immutable-variable view of Swift’s data model.
Another representation, not pursued but described
briefly here, tracks the state of collections as time
progresses.

In this alternate representation, the state of a col-
lection at any point would be represented by an arti-
fact. As processes which generate members complete,
a new artifact representing the updated state of the
collection comes into existence, with relations show-
ing its derivation from the previous state and from
the new member artifacts.

The problem with times discussed in section 10
does not appear in this model, as an accessor only
uses an artifact that already exists, representing
enough of the array to supply the requested mem-
ber artifact.

This model more accurately reflects the internal
state of the Swift runtime over time, and so may be
desirable in some cases. However, it less accurately
reflects the structure of SwiftScript programs, and so
(I think) is likely to be less easily understood and less
useful to an application programmer who may wish
to reason in terms of their application data flow.

12 Summary of OPM sugges-
tions

Section 4 asks if the contains relation is transitive
over multiple levels of containment. This is not ex-
plicit in the text of [OC]. That section also asks
if there is a standard annotation for indicating the

name of a member of a collection (an array index or
structure member name)

Section 8 asks how provenance of array indices is
to be stored, suggesting either that annotations are
artifacts in their own right, or that a different style
of accessor be defined, using an artifact rather than
an annotation to express array index.

Section 10 expresses concern over the violation of
the spirit of the OPM time section when modelling
the times of Swift collection construction and access.

13 Summary of Swift sugges-
tions

Section 5 suggests that Swift should produce new
DSHandles to represent the aliases created by struc-
ture or array access in order to better record the
provenance of those accesses independently from the
accessed data.

Section 7 suggests that an explicit map operator
may be a more provenance-friendly construct for it-
erating over a collection. Section 8 reiterates that.

References

[OC] http://mailman.ecs.soton.ac.uk/pipermail /provenance-
challenge-ipaw-info/attachments /20090605 /85b3e182 /atta

0001.pdf



