
Swift vs OPM Collections

Ben Clifford, benc@hawaga.org.uk

April 18, 2010

This note talks about hierarchical processes in
Swift, and compares them to the proposals for multi-
ple and hierarchical accounts in [OPM1.01] and [OC].

1 Notions of hierarchical pro-
cesses in Swift

Processes that seem straightforwardly representable
in Swift fall into two categories: at the highest
level, SwiftScript language constructs (procedures,
and perhaps foreach, iterate and if statements);
below that, the mechanics of Swift’s execution (for
example, moving files to, from and between various
caches, and interactions with job execution).

Swift provenance work so far has concentrated on
the former area, treating all of the low-level behaviour
as opaque and exposing neither processes nor arti-
facts. So (I think) this document will deal with the
two fairly separately. The section dealing with low-
level processes will need to define not only ways of
refinement but also the actual processes and artifacts
to be used.

2 Use cases of refinement in
Swift

A. Distinguishing what happened at the SwiftScript
language level from what happened at the me-
chanics level.

B. Within the language level, consider a program
that consists of nested procedure invocations:
outer → inner → helpers → apps, where ’outer’
is a driver loop iterating an algorithm over

many data sets, ’inner’ is the main call to
that algorithm, which is partly implemented in
SwiftScript using the ’helper’ procedure, and
partly using external application calls.

We might be interested in the use of our algo-
rithm, which corresponds to being interested in
the use of the ’inner’ procedure, ignoring who
called it (’outer’) and the mechanics of the inner
procedure (’helpers’).

For example, inner might perform a rescaling of a
file in a particular image format by using helpers
to convert to a standard format, using a standard
tool to rescale, and then converting back to the
proprietary format - but what we want to query
is ”what was rescaled?” rather than the nitty
gritty. As swiftscript evolves to have more ap-
plication functionality inside a swiftsript rather
than in external apps, this becomes more rele-
vant.

C. ”why? provenance” - why was a particular low
level operation done? The answer to this might
be something that looks like a stack trace in a
conventional programming language.

3 Refinement in [OPM1.01]
and [OC]

[OPM1.01] permits multiple accounts in a graph,
where different accounts may describe the same work
using different processes and artifacts. THere is a no-
tion of refinement, where one account α− describes
another account α+ in more detail (a loosely defined
term).

1



This is sufficient for use case A, where two accounts
can be made - one describing the SwiftScript level,
and one describing the inner workings. (Swift prove-
nance work to date has concentrated on describing
the SwiftScript level and omits inner workings en-
tirely).

For use case B, it is possible to ignore the hierarchy
entirely and pay attention only to ’inner’ procedures.
So the [OPM1.01] model is perhaps sufficient here
too.

This model does not address use case C very well.
Firstly, its not clear how multiple accounts should be
generated in order to provide nested procedure in-
formation. At present, Swift generates invalid OPM
containing contradictory information in a single ac-
count.

[OC] provides a notion of hierarchy in accounts.
With this, its possible to encapsulate stack-like in-
formation. For example, all SwiftScript procedures
at a particular stack depth n could be placed into an
account Sn, which refines Sn−1.

How does this interact with our use cases?

For use case A, low-level swift workings (perhaps
in their own heirarchy) would live in a further refine-
ment below all Sn accounts.

For use case B, calls to ’inner’ might now appear
in different Sn accounts depending on the definition
of ’outer’. This means that to query for all ’inner’
processes, it would be necessary to query over all Sn

accounts, rather than restricting the query to a par-
ticular account. That provides some input, perhaps,
to the design of an appropriate query language.

For use case C, does it allow us to extract a stack
trace for a given process? Given a process p in ac-
count Sn, we know the enclosing account Sn−1 But
that isn’t what we want, yet. We want to know the
specific process p+ that enclosed the execution of p:
a relation parentProcessOf .

Is it possible to infer that relation from [OC] or is
further annotation necessary?

4 low-level swift mechanics as
an OPM graph

This section discusses provenance information that
has not been dealt with at all so far - the mechan-
ics of moving data around and executing processes
transparent to a SwiftScript program.

Such information would be less useful to someone
interested in the SwiftScript level description of a pro-
gram and more in the actual operations that put a
concrete file in a particular location on a disk some-
where. This has not been the focus of Swift prove-
nance work so far, but is a legitimate area.

TODO this section

References

[OC] http://twiki.ipaw.info/pub/OPM/ChangeProposalMultipleHierarchicalRefinement/refinement.pdf

[OPM1.01] the opm v1.01 specification

2


