Beyond values

Notes on sameness in Python distributed systems

Ben Clifford

July 22, 2023

2

Contents

1 Sameness
1.1 Referential transparency .
1.2 functools.cache
1.3 Functions with effects . .

2 Objects
2.1 Observable object identity
2.2 Object identity as equality
2.3 Singletons
2.4 Different representations of
25 UUIDs...........
2.6 bool as a subclass of int .
2.7 Mutability

3 Rules of equality
3.1 Equivalence relations . . .
3.2 referential transparency 2
3.3 equality dunder methods .

equal values

3.4 relations between equivalences

3.0 xiny
3.6 functools.cache, again . .

4 Hashes

4.1 Hashes as a coarser equivalence

4.2 Strong hashes as equality

5 Equality by construction
5.1 Serialization
5.2 Proxying objects
5.3 Duplicating a configuration

10
11
11
12
13
13

15|
15
15
16
17
17
18

21
21
22

4

CONTENTS

Chapter 1

Sameness

Lots of us probably have some gut feeling for what a wvalue is inl
[Python: for example, 3, "hello!" or [1,2,3,4,5].

And probably have ideas about values are the same as each other.
[For example, 3 is the same as 3 but different to 4.

Probably we’d also generally think that the integer 3 is mostly the
same as the floating point 3.0 (for example, evaluating the Python
expression 3 == 3.0 tells us that part of the Python runtime thinks
SO...)

We’d also probably think that the dictionary {"a": 1, "b": 2}
is the same as the dictionary {"b": 2, "a": 1}.

Maybe if you're very Python, you'd also believe 1 == True (ag
the Python runtime does) even though you can clearly tell them
apart.

Often sameness of Python values is easy (like 3 == 3) but the
other examples above are intended to hint at a lot of complexity just,
below the surface. In these notes I want to dig into that complexity,
as has affected my work on a couple of distributed systems written|
in Python (Parsl and Globus Compute).

1.1 Referential transparency

TODO: maybe this belongs in the rules-of-equality section now?|
with mention of referential transparency only there? But with sim-
ple examples in the "sameness” section, not focusing too much onl
strict rules...

I'm going to talk about this implication:

6 CHAPTER 1. SAMENESS

=y = flx)=fy) Vo, f

This looks like some weird logic formula... but it’s capturing

something that when you’re think about mathematical values and

functions, you assume is true without thinking about it much.
Here’s an example, which I'll write in Python:

>> def f(v):
return v+1

>> x = 3
>> f(x)
4

What is this going to evaluate to?

>>y = 3
>> f(y)

It’s (obviously?) going to return 4 - but there’s two ways we can
reason about this: we can type that into the Python interpreter and
look at the result of executing f (y)...

.. or we can say well, f(x) must be the same as f(y) because x=y
and I already know that f(x) is 4, so f(y) must also be 4.

1.2 functools.cache

In essence that’s what’s happening when you use the @cache deco-
rator from the functools package like this:

>> @functools.cache
def g(v):
print (f” Calculating for {v}”)
return v+1

>> g(x)
Calculating for 3
4

>> g(y)
4

The second time we invoke g, the decorator sees that it’s already]
been invoked with an equal parameter, and doesn’t run the under-
ving body, instead relying on the return value it cached

|1 3. FUNCTIONS WITH EFFECTS 7

In Parsl, at a high level, this is also what happens when you turn|
on memoization and checkpointing to avoid re-executing Parsl task
invocations.

1.3 Functions with effects

[When you are doing this in a language like Python, rather than in
the abstract maths world, it relies on the function (in the Python
sense) behaving (mostly) like a function (in the maths sense) - it has
to be pure, which means it does not have effects.

But, it also relies on equality working correctly - something that
we usually don’t think about. For example, here are some obviously
True (or False)” Pythonrelations: 3 == 3,3 != 4, [1,2] == [1,2]
[1,2] '= [5,6,7], and so on.

In the rest of this note I want to dig into some specific cases|
where this doesn’t work.

First, functions can have effects (sometimes called side-effects).
There’s already one of those in the example I pasted above: I put 4
debugging print statement into the definition of g so that we could
tell if it ran or not.

In this case, it was deliberate, and we can say it’s ok to have
debugging prints, because they don’t affect the essential functional-
ity: to return an incremented number. But this behaviour would be
wrong if the effect was part of the essential behaviour.

For example, a function h(count) that operate hardware to dis-
pense a given number of cat treats and return True if that worked ok:
it would be incorrect to return True without dispensing anything. In
this case, it’s ok to describe h as a Python function, but it’s not a
function in the mathematical sense.

Effects don’t have to change the world to make a Python function|
not be a mathematical function any more: for example, a Python
function that observes the time (via time.time()) might return dif-
ferent values depending on when it is invoked - and so the output
wouldn’t be entirely defined by the input argument.

Other easy examples that I run into in this space are computing
random numbers (random.random()) and inspecting the runtime en-
vironment (platform.node()).

S

CHAPTER 1. SAMENESS

Chapter 2

Objects

[Values live in objects, and we can think about sameness of objects,
distinct from sameness of values. Sometimes we don’t think about
this distinction very hard.

2.1 Observable object identity

Another effect is when Python code looks not at the ”value” (what-
ever that is) of an object, but at the nature of the Python object
itself. Most brazenly, there is the id function, which returns:

Return the “identity” of an object. This is an integer
which is guaranteed to be unique and constant for this
object during its lifetime.

—https://docs.python.org/3/library/functions.
html#id

For example, with objects that represent large numbers, the val-
ues of two objects compare the same (with ==) but the id function
returns different values:

1000000

>> X

>> y = 1000000
>> X — §
True
>> id (x) = id (y)
False

id (x)

https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#id

L0 CHAPTER 2. OBJECTS

139863203106896
>> id (y)
139863203107280

”Interestingly,” this doesn’t happen with small integers, at least
in cpython: small integers (allegedly -5 to 256) are interned and are
only ever represented by a single object.

2.2 Object identity as equality

TODO: combine with previous chapter? or rework the separation

This leads to a second notion of equality in Python: in addition|
to the == value comparison operator, there is is, an operator that,
checks if two objects are the same object.
This operator looks at object identities, not at values, but it i
still in some sense an equality (or equivalence) operator. We can
think about the original referential transparency implication using
‘is‘ as a different equality on one side:

x is y = £(x) == £(y)

This holds in some different cases, for example, x is y =
id(x) == id(y), but note that this doesn’t work: x is y =
id(x) is id(y) - although id will return the same number, that
mumber might be represented by different objects in each case!
Different equalities (or equivalences - I'm being deliberately vague
about the difference here) can be related to each other: for example,
an equivalance can be finer than another equivalence.

For example, we might expect that: a is b = a ==

That’s a way of saying that an object is always ==-equal to itself.
This is reflexivity and it’s another ”obvious” thing that we don’t|
always think about but sometimes rely on.

There’s at least one counterexample built into Python (and youl
can create your own in your own __eq__ implementations) - it’s an
ongoing " controversy” with IEEE754, the standard for floating point
arithmetic.

>> x = math.nan

>> x is X
True
>> X — X
False

Where would you run into this in practice? If you were looking
or a float in a data structure using ==: you would never find nan

2.3 SINGLETONS 1l

Luckily people are culturally scared of using floats as keys, so actually|
not so much in practice.

2.3 Singletons

note (PEP-87) coding styles with singletons - this requires the use
of is with singleton classes such as None. There is only ever one
[None object so it’s fine to use is here: there won’t ever be another
object ”equal”(?) to None that is not that singleton object. (unless
you do weird stuff with ==) — contrasts with next section, that not
only is there only one representation, there is also only one object,
containing that representation.

A classic commonly-shown example of behaviour is here this po-
tentially surprising behaviour: for x,y = 1, x is y, but for (suitably
distinctly defined) x,y = 1000000, x is not y.

2.4 Different representations of equal valA
ues

[Another place where the notion of value becomes a bit fuzzy is when|
there are different representations of the ==-same value: such as with
dictionaries.

Here are two ==-equal dictionaries: the keys and values are all
well behaved objects (str), they have the same keys and each key
maps to the same value in both x, y.

>> x = {"a”:"one”, "b”:"two”}
>> y = {"b”7:"two”, "a”:” one”
>> X — ¥y

True

They’re different according to is, because they are different ob-
jects, which shouldn’t be too surprising:

>> x is ¥y
False

but we’'d expect functions (and expressions) that look at the
"value” of the dictionary to be the same for both x and y...
>> x[’a’] = y[’a’]
True
len(x) = len(y)

2 CHAPTER 2. OBJECTS

True
But, here’s a subtlety:

>> list (x.keys()) = list (y.keys())
False

Somehow the keys of a dict are not value-like because we canl
use them to distinguish between the two ==-equal objects, x and y.

Where would you run into this? Perhaps we’re iterating over
the entries in a dictionary - Parsl does this when computing the
checkpoint hash of a dict object. You won’t necessarily encounter
the entries in the same order (so the parsl code normalises the list of]
keys by sorting - which restores the equality-behaviour [TODO code
sample?]).

2.5 UUIDs

[Another related problem could be using UUIDs: A UUID repre-
sents a 128 bit number, but usually have multiple string representa-
tions (because the hex values a-f can each be written as a lower-case
or upper-case letter, and TODO PERHAPS: leading zeroes can be
omitted in each section) so the equality of UUIDs-rendered-as-strings
is not the same equality as equality-of-UUIDs:

>> import uuid

>> s1 = 7af240119—caa7—4d3d—bbee—0a1d9064e3bd”
>> s2 = 7aF240119—eAa7—4D3d—B5eE—0a1D9064e3Bd”
>> g1 =— s2

False

>> uuid .UUID(sl) == uuid.UUID(s2)

True

The equalities are related: str-equality implies UUID-equality,
but not the other way round. TODO: perhaps a forward reference
to the section on relations between equalities here?

TODO: a note that one of the reasons for encapsulating values
inside another class (eg making a UUID class rather than using str)
is that equality is now the equality of your domain object, not of
string — so then things that use equality (sets, membership testing,
) now use the equality of your domain object

l2.6._BOOL AS A SUBCLASS OF INT 13

2.6 bool as a subclass of 1nt

[Another equality awkwardness arises with subclasses: in Python,
bool is a subclass of int (for, I think, historical reasons) and the]
two elements of that type, False and True are ==-equal to 0 and 1
respectively.

TODO: reference for PEP that introduced the bool type, PEP-
285, https://peps.python.org/pep-0285/ and which contains lots
of juicy text including about behaviour of equalities.

>> False = 0
True
>> True =— 1
True

which can behave surprisingly with dictionaries:

>> d = {}

>> d[1] = str(1)

>> d[True] = str(True)
>> d

{1: "True’}

This sort of behaviour can arise with user defined enums too
although in Python 3.11, for user defined IntEnum in this specifiq
str case, that code now returns the underlying integer to make this|
less surprising - a change that has caused some different surprise inl
[Parsl] log file output.

2.7 Mutability

One final awkwardness comes with the passage of time, or mutability:
objects in Python are often mutable, which means their value canl
be changed. Mutability means that the equality behaviour between
two objects can change. For example, with the pretty strong is
equality relation, we usually have x is x = str(x) == str(x). But
that doesn’t work over time - for example if we make a function
memoization cache keyed by a reference to the object x, then change
the value of object x, the memoization will break: object identity|
over time doesn’t imply value identity over time.

TODO: example from parsl here: open bug on returning a muta-
ble object from Qcache to a user, where the user can then perform
arbitrary mutations - https://github.com/Parsl/parsl/issues/|

https://peps.python.org/pep-0285/
https://github.com/Parsl/parsl/issues/2555
https://github.com/Parsl/parsl/issues/2555

l14 CHAPTER 2. OBJECTS

2555. For two identical bytestrings x ==y, deserialise(x) == dese-

rialise(y) ... but that doesn’t hold over time if the object returned
by deserialise(x) is mutable.

https://github.com/Parsl/parsl/issues/2555
https://github.com/Parsl/parsl/issues/2555
https://github.com/Parsl/parsl/issues/2555

Chapter 3

Rules of equality

3.1 Equivalence relations

['ve talked about two different kinds of sameness: == and is, but
there’s a more general framework (with more examples to come)
with some rules that make things look nice.
The mathematical structures are called equivalence relations.
I mentioned reflezivity before: We would like: = = x for every|
value x.
There are a couple of others that we need too:
Transitivity: If t =y and y = z, then z = 2
A counter example to that might be if we define an equality for|
real numbers where x == y if x and y are within 0.1 of each other:
this doesn’t satisfy transitivity, because 0.0 = 0.07 and 0.07 = 0.14
but 0.0 = 0.14
symmetry: if x =y then y =z
This means that it doesn’t matter which way round we compare
things.

3.2 referential transparency 2

the rules of equivalence relations don’t tell us that two objects that,
are equivalent will behave the same: for example, (probably I'll have
this earlier on too), 1 == True, but str(1) and str(True) don’t give
the same output.

That sort of behaviour, which is often desirable, is called referen-
tial transparency - in a purely functional world, it talks about howl

15

L6 CHAPTER 3. RULES OF EQUALITY]

a function behaves when it’s applied to two ”equal” (or equivalent)
values:

r=y = f(z) = f(y) v,y f

The referential transparency equation I started with, about how|
equality and functions should interact: If x = y then f(z) = f(y).

The example above shows that this doesn’t work in general for]
Python but it’s an interesting way (I think) to consider which func-
tions will behave "right” when you're working with any particular
motion of sameness.

3.3 equality dunder methods

TODO: notes about how == turns into invocations of __eq__ on the
left and right objects, with reference to the python documentation

in this model of equality, a class gets to play a part in deciding
if its objects are equal to other objects. Python does not force a
definition of equality. How does this work and what do we need to
be careful of? (especially thinking about the rules in the previous
section...)

https://docs.python.org/3/reference/datamodel .html#ob]
__€q__

Key points to summarise here:

notimplemented to passthrough to someone elses impl: (I should
write what happens when you fall through with NotImplemented?
because it isn’t included in the quote)

By default, object implements __eq__() by using
is, returning NotImplemented in the case of a false com-
parison: True if x is y else NotImplemented

— from datamodel.html

order of fall through of NotImplementeds -

If the operands are of different types, and right operand’s
type is a direct or indirect subclass of the left operand’s
type, the reflected method of the right operand has pri-
ority, otherwise the left operand’s method has priority.

TODO: some practical code/examples of how these need to align/
they work in the real codebase? Perhaps IntEnum vs int compar-

ect.

nNow

ison implementation? Ideally I'd like something that can behave

https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/reference/datamodel.html#object.__eq__

3.4. RELATIONS BETWEEN EQUIVALENCES 17|

”surprisingly” — perhaps if you naively compare your own a,b values
against the opposite, but the opposite is a subclass? that’s actually|
something this fallthrough rule deliberately tries to avoids... but i
think if a subclass adds a field ¢ and does not implement a new eq,
then we're screwed

(related to this is that what data classes can help with? T think
thats what the eq paramter for DataClass is for... it makes an eq for
you...)

another example: so what’s a better one? Something that breaks
symmetry - would show that one way round we evaluate the code
for x first and the other way round we evaluate the code for y first,
and we need to hope/ensure that the two implementations agree...
falling through is one way to do that...?

TODO: rephrase this note moved from the section on equivalence
relations, about symmetry: Where that can have practical effect
in Python is in choosing which __eq__ gets to run first, x.__eq__|
or y.__eq__. Nothing forces those two implementations to return
consistent results.

3.4 relations between equivalences

TODO - bring talk about relating equivalence relations to each other,
eg. being finer, here into this more theoretical section - leaving the
section that introduces is slightly cleaner.

from wikipedia https://en.wikipedia.org/wiki/Equivalence
relation#Comparing_equivalence_relations

if x =A b implies x =B y for all x,y then =A is finer than =B
(or phrased the other way round, =B is coarser than =A).

Some of the equivalence relations/equalities in these notes are]
related to each other in this way, or are almost related, and where
they aren’t is a source of bugs:

for example, is is finer than == if we ignore the problem object

NaN (which we have to do anyway if we want to treat == as an
equivalence relation at all, because of symmetry) — that means if x|
is y, then we can assume that x ==y.

(and indeed, the next section deals with that NaN weirdness...)

3.5 xiny

is and == aren’t used only when explicitly invoked by a user, but are]
also used as part of other pieces of code that need to know if valuesd

https://en.wikipedia.org/wiki/Equivalence_relation#Comparing_equivalence_relations
https://en.wikipedia.org/wiki/Equivalence_relation#Comparing_equivalence_relations

li8 CHAPTER 3. RULES OF EQUALITY]

are the same.

We've seen this already with functools.cache which needs to
know about sameness in order to decide if a particular parameter
already has a cached result or not.

A common use is inside the in operator: v in c is True when|
the value v is contained in some collection. To do this, in needs
some notion of equality so it can, for example, visit every element of]
c and ask if it is equal to v.

(TODO: what’s actual python abstract type for the RHS of ¢?)

We might expect in to use one of the two equalities already men-
tioned: ==-equality or is-equality. But, a bit of testing will show it
isn’t either of those:

If in was using ==-equality, then it would not be able to determine
that math.nan was in a list, like this:

>> import math

>> math.nan =— math.nan
False

>> math.nan in [math.nan]
True

If in was using is-equality, then it would not see that the integer
3 and the floating point 3.0 are the same value:

>> 3 is 3.0
False

>> 3 in [3.0]
True

This actual equality test is implemented in C, in PyObject_RichC
in cpython’s object.c. This code has a shortcut for object identity
that regards two objects as equal if they are either is-equal or ==-
equal.

That forms a useful equality which, along with the fact that
math.nan is a singleton, fixes up the missing reflexivity of equality|
of math.nan.

3.6 functools.cache, again

[UGH all of the below is not right: functools cache has weird equality|
behaviour with shortcuts and relies on hash() quite a lot (not sure iff

bmpareBool

that forces equality...)

3.6 FUNCTQOLS.CACHE. AGAIN 19

weirdnesses: short cuts for int and str, which makes a simple
example seem like it can distinguish always between 3 and 3.0 (which
is not true) — there’s a typed option to skip that.

so *mostly* it will use dict equality, but with an extra shortcut
on the front that makes things behave differently in some simple
special cases.

So it’s a good thing we can turn on typing, but it’s a bad thing
(probably) that this 3 vs 3.0 shortcut codepath exists...

hashes aren’t really relevant in this explanation (even thoughl
they're used as part of the hash key calculation... that’s invisible to
the equality relation)

The interesting takeaway, I think, is that functools.cache usually]
but not always respects ==-equality.

Let’s revisit functools.cache.

The equalities we've seen so far might make you quite uncom-
fortable:

if 1 == True we might expect functools.cache to behave quite
badly with a function like this:

@functools. cache
def s(v):
return str(v)

Uncached s(1) and s(True) would return different results (the
strings >1’ and ’True’) - but with the various Python equalities
we've seen so far, we might expect functools.cache to be un-
able to distinguish between them and share a cache entry, returning
whichever was computed first.

But that’s not what happens:

>> s(1)
717

>> s (True)
"True’

functools.cache uses its own equality, which tries harder to|
distinguish between values that other equalities would treat as the
saime.

20 CHAPTER 3. RULES OF EOUALITY|

Chapter 4

Hashes

TODO: this intro is about cross-project objects, not about hashes...
so move it/integrate it elsewhere?

So far, I've talked about different equalities between objects in
the same Python process. In that situation, we can invoke some
Python code, such as the __eq__ dunder method, to compute if two
objects are equal or not.

We’re not always so lucky: sometimes Python objects exist in]
different processes, separated by time or space (or both). In this
situation, we can’t pass two objects as parameters to some equality|
testing code, so what does equality mean in that situation?

TODO: maybe some more discussion here about what equality]
actually does mean here? (move some of the discussion from the
serialisation section here...7)

4.1 Hashes as a coarser equivalence

Some objects can be hashed, and we can hope that that hash is 4
(mathematical) function of their value. Depending on the character-
istics of the hash, there are a couple of ways we can use this:

For any hash, we can assume that: x =y == hash(x) = hash(y)
and so we can do things like put stuff in hash buckets: if we’re looking]
for y, we know that if some x exists already where x =y, it will be
in hash bucket hash(y) (aka. hash(x)) - we can forget about all the
other hash buckets entirely.

TODO: we can assume it with python’s hash(), __hash__() be-
cause it’s a requirement in the data model:

21

b9 CHAPTER 4. HASHES

The only required property is that objects which com-
pare equal have the same hash value
— datamodel .html#object.__hash__

This works (slowly) even if the hash function is poor: for example,
the constant hash(x) = 7 - where it’s quite easy to see that this
relationship holds: x =y = 7=T.

(There was a performance bug in the Globus Toolkit string hash
function sometime around 2004, where it only hashed a prefix of
strings, and that prefix was often the same - globus_ - so the hash
function effectively became a constant) TODO: github URL to the
relevant commit? - that was essentially exactly this ”constant hash”
performance problem.

The meaning you can get from hashes is ”if two hashes are dif-
ferent, then the vaues are different” — there’s no implication that if
two hashes are the same, the values are the same, so you still have to
make some better equality test, but you can avoid that (usually more
expensive) test in many cases because of this implication. Compare
that to the PyObject_RichCompareBool test: that technique and
this hashing technique both make a quick test that is inaccurate in
a specific way (is might incorrectly say two values are different; a
hash might incorrectly say that two values are the same) and then
if needed perform a more expensive test to get the right answer.

TODO: note that dict (I think) requires that you can make &
hash to use as a dictionary key (not value) ? - citation to source
code, it’s for performance reasons?

4.2 Strong hashes as equality

TODO: what’s the technical term for this kind of hash? strong?|
(cryptographically secure is another related term)

With stronger hash functions, we want the relationship to go the
other way too: x =y <= hash(x) = hash(y). With that we can
do parsl style checkpointing, which makes a hash of the parameters
to a function, and uses that as a cache key in an external database.
This is only safe because of the stronger relationship between = and
our checkpoint hash: we need to be sure that x =y = hash(x)
= hash(y). In some sense, we need the ==-equality and the hash|
equality to be ”the same” equality: that is they make the same
decision about whether two objects are equal or not, in all cases.

In the Parsl checkpointing code, one of the biggest complica
tions is computing such a hash for complex objects, using the pars

|4 2. STRONG HASHES AS EQUALITY 23

id_for_memo function: we need a hash value that is consistent in|
the face of different representations of the same object (see the dis-
cussion about dict above) and we need a hash that is consistent
between Python processes, so that when a Parsl workflow is re-run,
function invocations with the ”same” parameters will be found in
the checkpoint database.

TODO: git commit IDs (and other similar IDs used inside git) are
a place outside of Python where you might have encountered this.
(comedy ensued when someone found a collision: TODO hyperlink]
to that)

b4 CHAPTER 4. HASHES

Chapter 5

Equality by
construction

5.1 Serialization

[put ”same” in quotes there, because here’s a new, more abstract,
kind of equality. The kinds I've talked about before, ==, is and
hashing are all equalities that you can compute inside a single Python
process (by evaluating the Python expression x == y in that Python
process, for example).

But what does it mean for values to be equal when they are kept
inside different Python processes? At the code level, there’s no longer
a way to compute whether two objects represent the same value by
passing into some comparison operator or function (like ==) and they
are definitely different objects so the is operator is meaningless.

We’ve got serialisation, and what we care about in Parsl is some-
thing involving serialization and equality: if in my first process I
have a function and a value, and I send the function and the value
to another process, and in that second process apply the function to
the value, and then send the result back, then I end up with a value
that is equal to if I applied the function to the value locally. (like
with checkpointing, we're describing a computation and then instead
of performing that computation, doing something that we believe to
be equivalent)

TODO: looping diagram of (f,v) -j r, - (f,v)) -j 1’ -j r

So there’s a notion of equality-by-serialisation: if I take an value
in one process and deserialise it so that it behaves the same, in thel

25

be CHAPTER 5 EQUALITY BY CONSTRUCTION

above sense, then that value in one process is equal to the value onl
the other process. This is by construction, not by comparison - youl
can construct an equal object on the remote system, but not test anl
existing distant object for equality directly.

Getting serialisation right (in this value equality sense) can be
quite complicated. In the Parsl and Globus Compute world, the
most complexity comes from getting functions and classes from one
place to the other, with three different ways in use: if a functionl
or class seems likely to be installed remotely (based on some not-
always-right heuristics in dill) then it will be referenced by name;
otherwise dill can attempt to send Python’s internal representation
(which does not work well when each end is a different version of]
Python) and finally a Globus Compute specific method will try to
send the source code for a function (which doesn’t work when af
function doesn’t have source code).

This latter method has echoes of Python’s repr function:

For many types, this function makes an attempt to
return a string that would yield an object with the same
value when passed to eval();

— TODO citation of quote

see also the "serpent” serialiser that pretty much targets being a
repr() style serialiser intended to use pythons ast string evaluator as
the de-serialiser.

5.2 Proxying objects

This pretty loose model of serialization leads to a potential parsl se-
rialization API that is similarly loose - for plugging in novel systems
for moving objects around (such as ProxyStore TODO citation), this
loose view of ”"what we want is an object that behaves the same’
but it doesn’t really matter how that object appears” model means
a store-like system like proxystore is also a serializer. - there’s an in-
teresting related issue in ProxyStore (and in making ” proxies” in gen-
eral: https://github.com/proxystore/proxystore/issues/311 -
where a proxy object tries hard to pretend to behave like the object,
it’s proxying... but it is a distinct object, so it’s still possible to
detect it’s different, and in the case of this bug, especially, for sin-
cletons like None, where coding style in PEP-8 (reference?) is to
use x is None rather than x == None - where we are caring about
object identity not value identity... a proxy object cannot "be”

https://github.com/proxystore/proxystore/issues/311

5.3 DUPLICATING A CONFIGURATION 27

singleton in this way. In general when you ”deserialise” (in the ab-
stract sense) a singleton, you need to return the singleton, not create
a new singleton.

5.3 Duplicating a configuration

TODO: maybe a section on parsl’s config mechanism: ”active” ob-
jects (that are not like data-classes, aka. structs, that do stuff... so
you can’t ”copy” them easily... and structures that are constructed
actively - for example, with a helper like ”get local host’s IP ad-
dresses”...

what does it mean to copy this config, to get ”the same” config?
should we store the IP address that we were configured with, or
should we store that the IP address was acquired by a particular
helper function?

leads to fresh_config() notion in Parsl test suite... ”every time
you run this function, you’ll get ’the same’ configuration, where
sameness is configuration-sameness, not individual-field-sameness”

Index

data classes, 17
dictionaries, 11

effects, 7
enum, 13
equivalence relations, 15

functools.cache, 6, 18
hashes, 21

in, 17
is, 10

mutability, 13
[NotImplemented, 16

[ProxyStore, 26
[PyObject_RichCompareBool, 18

reflexivity, 15
repr, 26

serialization, 25
serpent, 26
symmetry, 15

transitivity, 15

UUIDs, 12

28

	Sameness
	Referential transparency
	functools.cache
	Functions with effects

	Objects
	Observable object identity
	Object identity as equality
	Singletons
	Different representations of equal values
	UUIDs
	bool as a subclass of int
	Mutability

	Rules of equality
	Equivalence relations
	referential transparency 2
	equality dunder methods
	relations between equivalences
	x in y
	functools.cache, again

	Hashes
	Hashes as a coarser equivalence
	Strong hashes as equality

	Equality by construction
	Serialization
	Proxying objects
	Duplicating a configuration

