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CHAPTER

ONE

INTRODUCTION

These are notes about my current iteration of Parsl observability pro-
totype.

1.1 The Question

Read this document. Give your feedback about if you think it should
be the direction Parsl goes.
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CHAPTER

TWO

WHAT IS OBSERVABILITY

2.1 What is observability, in the Parsl
context

“Observability is a measure of how well internal states of a system
can be inferred from knowledge of its external outputs.” (https://en.
wikipedia.org/wiki/Observability)

how can we tell whats going on inside a Parsl run by what we can see
externally? how can we expose more “stuff”?

abstract notion, but in Parsl that is about: logging; Parsl monitoring.

and this prototype is about doing that “better”

2.2 Relation to monitoring and logging
systems

Parsl uses python’s logging module. Parsl has its own monitoring sys-
tem. This work builds on both of those, but changes how thye are used
significantly.
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2.3 Why observability? vs monitoring

Original monitoring prototype was focused on what is happening with
Parsl user level concepts: tasks, blocks for example as they move
through simple states. Anything deeper is part of the idea of “Parsl
makes it so you don’t have to think about anything happening inside”.
Which is not how things are in reality: neither for code reliabilty or
for performance.

Parsl Monitoring is too strict in a couple of ways:

The data model is fairly hard-coded into the architecture: specific
SQL schema, specific message formats and specific places where those
messages are sent.

The transmission model is real-time. Even with recent radio plugins,
the assumption is still that messages will arrive soon after being sent.

The almost-real-time data transmisison model is especially awkward
when combined with SQL: distributed system events will arrive at dif-
ferent times or in the original UDP model perhaps not at all, and the
“first” message that creates a task (for the purposes of the database)
might arrive after some secondary data that requires that primary key
to exist. yes, it’s nice for the SQL database to follow foreign key rules,
especially when looking at the data “afterwards” but that’s not realistic
for distributed unreliable events.

Contrast this to:

• arbitrary logs that may be different for different kinds of execu-
tion - for example, different executor implementations

• pouring over these logs “later” - there’s no need for those logs
to accumulate in real time in one place for post-facto analysis.
And in practice, when doing log analysis rather than monitor-
ing analysis, “send me a tarball of your runinfo” is a standard
technique.

Parsl Monitoring is not well suited to adding in new ad-hoc events,
perhaps just for one off debugging cases that will be thrown away:

4 Chapter 2. What is observability
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schema modifications in both SQL and in message tasks, and rearrang-
ing code to accomodate that is a serious business. Contrast logging:
there’s always a logger in any part of Parsl, and you can logger.
debug("hello") pretty much anywhere.

Parsl Monitoring was also implemented with a fixed queries / dash-
board mindset: one set of views that is expected to be sufficient. As
time has shown, people like to make other outputs from this data.

want to debug/profile whats happening inside parsl rather than inside
the user workflow.

2.3. Why observability? vs monitoring 5



Observability in the face of Modularity

6 Chapter 2. What is observability



CHAPTER

THREE

HIGH LEVEL STRUCTURE OF THIS
PROJECT

This project consists of a few related parts:

• Emitting wide records from Parsl and Academy Python code

• Moving those log records around

• Ingesting and analysing records, including wide ones, from
many sources

TODO: add cross references for each of these bullet points to one il-
lustrative other section.

3.1 Diagram

of the components/flow.

to distinguish the pieces of my work, and also to distinguish the pieces
of what might be substituted where.

specific emphasis that this is common techniques, not a single imple-
mentation or protocol standards or single anything.

Python logger
API ----> JSON structured logs \

(continues on next page)
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(continued from previous page)

|--> log␣
→˓movement --> Python-based query model ␣
→˓--> graphs/reports

non-JSON structured logs / to one␣
→˓place --> post facto schema normalisation

(eg. WQ, Parsl monitoring) classically␣
→˓files, --> data-structure based queries

but eg ryan/
→˓kafka

logan␣
→˓demo/agent polling

8 Chapter 3. High level structure of this project



CHAPTER

FOUR

CASE STUDIES AND ADVENTURES

4.1 A motivating use case

Here’s a use case that is hard with what exists in master-branch Parsl
right now.

I want to know, for a particular arbitrary task, the timings of the task as
it is submitted by the user workflow, flows through the DFK, into the
htex interchange, worker pool, executes on an htex worker, and flows
back to the user, with the timing of each step.

What exists in master Parsl right now is some information in monitor-
ing, and some information in log files. The monitoring information
is focused on the high level task model, not what is happening inside
Parsl to run that high level model. Logs as they exist now are extremely
ad-hoc, spread around in at least 4 different places, and poorly inte-
grated: for example, log messages sometimes do not contain context
about which task they refer to, do not represent that context uniformly
(e.g. in a greppable way) and are ambiguous about context (e.g. some
places refer to task 1, the DFK-level task 1, and some places refer to
task 1, the HTEX-level task 1, which could be something completely
different).

As a contrast, an example output of this prototype (as of 2025-10-26)
is:

9
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=== About task 358 ===
2025-10-26 10:29:46.467298 MainThread@117098 Task␣
→˓358: will be sent to executor htex_Local (parsl.
→˓log)
2025-10-26 10:29:46.467412 MainThread@117098 Task␣
→˓358: Adding output dependencies (parsl.log)
2025-10-26 10:29:46.467484 MainThread@117098 Task␣
→˓358: Added output dependencies (parsl.log)
2025-10-26 10:29:46.467550 MainThread@117098 Task␣
→˓358: Gathering dependencies: start (parsl.log)
2025-10-26 10:29:46.467620 MainThread@117098 Task␣
→˓358: Gathering dependencies: end (parsl.log)
2025-10-26 10:29:46.467685 MainThread@117098 Task␣
→˓358: submitted for App random_uuid, not waiting␣
→˓on any dependency (parsl.log)
2025-10-26 10:29:46.467752 MainThread@117098 Task␣
→˓358: has AppFuture: <AppFuture at 0x7f8bc1aed730␣
→˓state=pending> (parsl.log)
2025-10-26 10:29:46.467818 MainThread@117098 Task␣
→˓358: initializing state to pending (parsl.log)
2025-10-26 10:29:46.469992 Task-Launch_0@117098␣
→˓Task 358: changing state from pending to launched␣
→˓(parsl.log)
2025-10-26 10:29:46.470113 Task-Launch_0@117098␣
→˓Task 358: try 0 launched on executor htex_Local␣
→˓with executor id 340 (parsl.log)
2025-10-26 10:29:46.470240 Task-Launch_0@117098␣
→˓Task 358: Standard out will not be redirected.␣
→˓(parsl.log)
2025-10-26 10:29:46.470310 Task-Launch_0@117098␣
→˓Task 358: Standard error will not be redirected.␣
→˓(parsl.log)
2025-10-26 10:29:46.470336 MainThread@117129 HTEX␣
→˓task 340: putting onto pending_task_queue␣
→˓(interchange log)
2025-10-26 10:29:46.470404 MainThread@117129 HTEX␣

(continues on next page)

10 Chapter 4. Case studies and adventures
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(continued from previous page)

→˓task 340: fetched task (interchange log)
2025-10-26 10:29:46.470815 Interchange-
→˓Communicator@117144 Putting HTEX task 340 into␣
→˓scheduler (Pool manager log)
2025-10-26 10:29:46.471166 MainThread@117162 HTEX␣
→˓task 340: received executor task (Pool worker log)
2025-10-26 10:29:46.492449 MainThread@117162 HTEX␣
→˓task 340: Completed task (Pool worker log)
2025-10-26 10:29:46.492742 MainThread@117162 HTEX␣
→˓task 340: All processing finished for task (Pool␣
→˓worker log)
2025-10-26 10:29:46.493508 MainThread@117129 HTEX␣
→˓task 340: Manager b'4f65802901c6': Removing task␣
→˓from manager (interchange log)
2025-10-26 10:29:46.493948 HTEX-Result-Queue-
→˓Thread@117098 Task 358: changing state from␣
→˓launched to exec_done (parsl.log)
2025-10-26 10:29:46.494729 HTEX-Result-Queue-
→˓Thread@117098 Task 358: Standard out will not be␣
→˓redirected. (parsl.log)
2025-10-26 10:29:46.494905 HTEX-Result-Queue-
→˓Thread@117098 Task 358: Standard error will not␣
→˓be redirected. (parsl.log)

This integrates four log files and two task identifier systems into a sin-
gle sequence of events.

4.2 Debugging monitoring performance
as part of developing this prototype

findcommon tool - finds common task sequence for templated logs and
outputs their sequence, like this:

First run parsl-perf like this:

4.2. Debugging monitoring performance as part of
developing this prototype

11
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parsl-perf --config parsl/tests/configs/htex_local.
→˓py

[...]

==== Iteration 3 ====
Will run 58179 tasks to target 120 seconds runtime
Submitting tasks / invoking apps
All 58179 tasks submitted ... waiting for completion
Submission took 103.880 seconds = 560.059 tasks/
→˓second
Runtime: actual 137.225s vs target 120s
Tasks per second: 423.967
Tests complete - leaving DFK block

which executes a total around 60000 tasks.

First, note that this prototype benchmarks on my laptop significantly
slower than the contemperaneous master branch, at .

That’s perhaps unsurprising: this benchmark is incredibly log sensis-
tive, as my previous posts have noted - TODO: link to blog post and
to R-performance report) - around 900 tasks per second on a 120 sec-
ond benchmark. And this prototype adds a lot of log output. Part of
the path to productionisation would be understanding and constraining
this.

From that output above, it is clear that the submission loop is taking
a long time: 100 seconds. With about 35 seconds of execution hap-
pening afterwards. The Parsl core should be able to process task sub-
missions much faster than 560 tasks per seconds. So what’s taking up
time there?

Run findcommon (a could-be-modular-but-isn’t helper from this ob-
servability prototype) on the result:

0.0: Task %s: will be sent to executor htex_local
0.00023320618468031343: Task %s: Adding output␣

(continues on next page)
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(continued from previous page)

→˓dependencies
0.0004515730863634116: Task %s: Added output␣
→˓dependencies
0.000672943356177761: Task %s: Gathering␣
→˓dependencies: start
0.0008952160973877195: Task %s: Gathering␣
→˓dependencies: end
0.0011054732824941516: Task %s: submitted for App␣
→˓app, not waiting on any dependency
0.001316777690507145: Task %s: has AppFuture: %s
0.0015680651123983979: Task %s: initializing state␣
→˓to pending
23.684763520758917: HTEX task %s: putting onto␣
→˓pending_task_queue
23.68483662049256: HTEX task %s: fetched task
23.684863335335613: Task %s: changing state from␣
→˓pending to launched
23.6850573607536: Task %s: try %s launched on␣
→˓executor %s with executor id %s
23.685248910492184: Task %s: Standard out will not␣
→˓be redirected.
23.685424046734745: Task %s: Standard error will␣
→˓not be redirected.
23.686276226995773: Putting HTEX task %s into␣
→˓scheduler
23.686777094898495: HTEX task %s: received executor␣
→˓task
23.687025900194147: HTEX task %s: Completed task
23.687268549254735: HTEX task %s: All processing␣
→˓finished for task
23.687837933843614: HTEX task %s: Manager %r:␣
→˓Removing task from manager
23.688483699079185: Task %s: changing state from␣
→˓launched to exec_done

In this stylised synthetic task trace, a task takes an average of 23 sec-

4.2. Debugging monitoring performance as part of
developing this prototype
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onds to go from the first event (choosing executor) to the final mark
as done. That’s fairly consistent with the parsl-perf output - I would
expect the average here to be around half the time of parsl-perf’s sub-
mission time to completion time (30 seconds).

What’s useful with findcommon’s output is that it shows the insides of
Parsl’s working in more depth: 20 states instead of parsl-perf’s start,
submitted, end. And the potential exists to calculate other statistics on
these events.

So in this average case, there’s something slow happening between
setting the task to pending, and then the task “simultaneously” being
marked as launched on the submit side and the interchange receiving
it and placing it in the pending task queue.

That’s a bit surprising - tasks are meant to accumulate in the inter-
change, not before the interchange.

So let’s perform some deeper investigations – observability is for Se-
rious Investigators and so it is fine to be hacking on the Parsl source
code to understand this more. (by hacking, I mean making temporary
changes for the investigation that likely will be thrown away rather than
integrated into master).

Let’s flesh out the whole submission process with some more log lines.
On the DFK side, that’s pretty straightforward: the observability pro-
totype has a per-task logger which, if you have the task record, will
attach log messages to the task.

For example, here’s the changes to add a log around the first call to
launch_if_ready, which is probably the call that is launching the task.

+ task_logger.debug("TMP: dependencies added,␣
→˓calling launch_if_ready")

self.launch_if_ready(task_record)
+ task_logger.debug("TMP: launch_if_ready returned
→˓")

My suspicion is that this is around the htex submission queues, with a
secondary submission around the launch executor, so to start with I’m
going to add more logging around that.

14 Chapter 4. Case studies and adventures
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Then rerun parsl-perf and findcommon, without modifying either, and
it turns out to be that secondary submission, the launch executor:

0.0020453477688227: Task %s: TMP: submitted into␣
→˓launch pool executor
0.002256870306434224: Task %s: TMP: launch_if_ready␣
→˓returned
14.073021359217009: Task %s: TMP: before submitter␣
→˓lock
[...]
14.078550367412324: Task %s: changing state from␣
→˓launched to exec_done

Don’t worry too much about the final time (14s) changing from 23s
in the earlier run – that’s a characteristic of parsl-perf batch sizes that
I’m working on in another branch.

If that’s the case, I’d expect the thread pool executor, previously much
faster than htex, to show similar characteristics:

surprisingly, though although the throughput is not much much
higher. . . the trace looks very different timewise. the bulk of the time
here still happens at the same place, there isn’t so much waiting there
- less than a second on average. That’s possibly because the execu-
tor can get through tasks much faster so the queue doesn’t build up so
much?

==== Iteration 2 ====
Will run 68976 tasks to target 120 seconds runtime
Submitting tasks / invoking apps
All 68976 tasks submitted ... waiting for completion
Submission took 117.915 seconds = 584.965 tasks/
→˓second
Runtime: actual 118.417s vs target 120s
Tasks per second: 582.485

0.0: Task %s: will be sent to executor threads
0.00014157412110423425: Task %s: Adding output␣

(continues on next page)

4.2. Debugging monitoring performance as part of
developing this prototype
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(continued from previous page)

→˓dependencies
0.0002898652725047201: Task %s: Added output␣
→˓dependencies
0.000425118042214259: Task %s: Gathering␣
→˓dependencies: start
0.0005696294991521399: Task %s: Gathering␣
→˓dependencies: end
0.0006999648174108608: Task %s: submitted for App␣
→˓app, not waiting on any dependency
0.0008433702196425292: Task %s: has AppFuture: %s
0.0010710284919573986: Task %s: initializing state␣
→˓to pending
0.0011652027385929428: Task %s: TMP: dependencies␣
→˓added, calling launch_if_ready
0.0012973675719411494: Task %s: submitting into␣
→˓launch pool executor
0.0014397921284467212: Task %s: submitted into␣
→˓launch pool executor
0.0015767665501452072: Task %s: TMP: launch_if_
→˓ready returned
0.3143575128217656: Task %s: before submitter lock
0.31448896150771743: Task %s: after submitter lock,␣
→˓before executor.submit
0.3146383380777917: Task %s: after before executor.
→˓submit
0.3147926810507091: Task %s: changing state from␣
→˓pending to launched
0.3149239369413048: Task %s: try 0 launched on␣
→˓executor threads
0.31504996538376506: Task %s: Standard out will not␣
→˓be redirected.
0.31504996538376506: Task %s: Standard out will not␣
→˓be redirected.
0.3151759985402679: Task %s: Standard error will␣
→˓not be redirected.

(continues on next page)
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(continued from previous page)

0.3151759985402679: Task %s: Standard error will␣
→˓not be redirected.
0.315319734920821: Task %s: changing state from␣
→˓launched to exec_done

So maybe I can do some graphing of events to give more insight than
these averages are showing. A favourite of mine from previous mon-
itoring work is how many tasks are in each state at each moment in
time. I’ll have to implement that for this observability prototype, be-
cause it’s not done already, but once it’s done it should be reusable.
and it should share most infrastructure with findcommon. Especially
relevant is discovering where bottlenecks are: it looks like this is a
parsl-affecting performance regression that might be keeping workers
idle. For example, we could ask: does the interchange have “enough”
tasks at all times to keep dispatching. With 8 cores on my laptop, I’d
like it to have at least 8 tasks or so inside htex at any one time, but
this looks like it might not be true. Hopefully graphing will reveal
more. It’s also important to note that this findcommon output shows
latency, not throughput – though high latency at particular points is an
indication of throughput problems.

Or, I can look at how many tasks are in the interchange over time: there
either is, or straightforwardly can be, a log line for that. That will fit
a different model to the above log lines which are per-task. Instead
they’re a metric on the state of one thing only: the interchange. of
which there is only one, at least for the purposes of this investigation.

Add a new log line like this into the interchange at a suitable point
(after task queueing, for example):

+ ql = len(self.pending_task_queue)
+ logger.info(f"TMP: there are {ql} tasks in the␣
→˓pending task queue", extra={"metric": "pending_
→˓task_queue_length", "queued_tasks": ql})

Now can either look through the logs by hand to manually see the
value. Or extract it programmatically and plot it with matplotlib, in an

4.2. Debugging monitoring performance as part of
developing this prototype

17
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ad-hoc script:

import matplotlib.pyplot as plt
from parsl.observability.getlogs import getlogs

logs = getlogs()

# looking for these logs:
# "metric": "pending_task_queue_length", "queued_
→˓tasks": ql})

metrics = [(float(l['created']), int(l['queued_tasks
→˓']))

for l in logs
if 'metric' in l
and l['metric'] == "pending_task_queue_

→˓length"
]

plt.scatter(x=[m[0] for m in metrics],
y=[m[1] for m in metrics])

plt.show()

and indeed that shows that the interchange queue length almost never
goes above length 1, and never above length 10.

That’s enough for now, but it’s a usecase that shows partially under-
standing throughput: we can see from this observability data that the
conceptual 50000 task queue that begins in parsl-perf as a for-loop
doesn’t progress fast enough to the interchange internal queue, and
so probably performance effort should probably be focused on under-
standing and improving the code path around launch and getting into
the interchange queue. With an almost empty interchange queue, any-
thing happening on the worker side is probably not too relevant, at
least for that parsl-perf use case.

This “understand the queue lengths (or implicit queue lengths) towards

18 Chapter 4. Case studies and adventures
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execution” investigation style has been useful in understanding Parsl
performance limitations in the past.

4.3 Visualization for task prioritisation

(two graphs that are already in parsl-visualize but probably-buggy -
see #4021)

this uses replay-monitoring.db approach with no runtime changes. be-
cause the work I did there was in parsl master, but I want to do custom
visualizations.

[TODO: link to blog post]

4.3.1 prioritisation part 2: by task type

work towards a second blog post here. now most of the mechanics are
worked out.

Step 2 of that: This was a second requirement on prioritisation from
DESC.

use an A->B1/B2->C three step diamond-dag because its a bit less
trivial.

visualization of task types for jim’s follow on question: how can we
adapt step 1 to colour by app name? It’s not well presented in parsl-
visualize because that focuses on state transitions rather than on app
identity as the primary colour-key.

Visualisation also coloured by task-chain/task-cluster to show a cluster
based visualization.

priority modes: natural (submit-to-htex order, “as unblocked” order),
random (priority=random.random()), chain priority by chain depth,
chain priority by cluster. the last two should be “the same” in plot
4 i hope. unclear what random mode will do, if anything? i guess
get more later-unlocked tasks randomly in there? random is always

4.3. Visualization for task prioritisation 19
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interesting to me as pushing things away from degenerate cases - i this
case “Cs run last”

plot 1: task run/running_ended indivual tasks, coloured by parsl app
name plot 2: tasks of each of two kinds, coloured by parsl app name

plot 3: tasks running by type, with no priority, with two different pri-
ority schemes.

plot 4: Visualisation of end-result completed - i.e. how many C tasks
have completed over time, ignoring everything else about the inside.
with prioritisation and with my two prioritisation schemes.

Plot 4 should be the top level plot set - because it an example “goal” of
the prioritisation, I think. (might be because you want results sooner,
might be because C completing means you can delete a load of inter-
mediate temporary data sooner).

From an observability perspective: the task chain identity is not known
to Parsl. this is additional metadata, that in observability concepts, is
added on by a “higher level system” and joined on at analysis time. the
application knows about it, and the querier knows about it. none of the
intermediate execution or observability infrastructure knows about it.

1. the status table rerun gives runtimes for plotting based on Parsl
level dfk/task/try but doesn’t give any metadata about those.
such as app name. in SQL this is added on as a JOIN, and so it is
here too - rerun the tasks table as a sequence of log records - note
that they don’t have a notion of “created” here because they are
records but aren’t from a point in time, instead an already aggre-
gated set of information. don’t let that scare you. observability
records don’t have to look like the output of a printf!

4.4 Adding observability to a prototype:
idris2interchange

[TODO: rename some of the uses cases I have actually implemented
short code for as “adventures”]
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idris2interchange - i want to debug stuff, not be told by the observabil-
ity system HAHA we don’t support your prototyping. in some sense
thats exactly the time I need the observability system to be helping me.
not later on when it all works.

idris2interchange project is not aimed at producing production code.
ever. in that sense it is very similar to some student projects that in-
teract with parsl.

mini-journal: what did i have to do to support idris2 logging? * make
log records JSON format instead of textual - prior format was times-
tamp / string. theres a json library but to start with this records are
so simple i’ll template them in. * also already had a simple log-of-
value mechanism in there already which readily translates to logging
a template, a full message, and the value as separate fields.

now there are json records going to the console. I don’t trust the string
escaping, but i’ll deal with that ad-hoc. but also: needs to go to a file;
if i want it to interact with other log files, I need some common keys.
htex_task_id is the obvious one there for task correlation. manager ID
is another.

To go to a file: lazy redirect of stdout to idris2interchange.log. This
could be done more seriously to avoid random prints going to the file
but this is a prototype so I don’t care.

Run it through jq for basic validation and haha its broken. I got con-
fused about JSON quotes vs Python style quotes. Various iterations of
jq vs formatting fixes to work towards jq believing this is valid.

That log escaping, which i implemented pretty quickly, seems to make
logging extremely slow - especially outputting the pickle stack which
is actually quite a big representation when it has a manager registration
with all my installed python packages in there. but hey thats what log
levels/log optionality is for.

Let’s do some scripting to figure out which of these lines is so expen-
sive - based on line length. one line is 49kb long! (its repeating the
full pickled task state rather than a task id!). and similar with manager
IDs. but this is probably the sort of changes I’ll be needing to make to
tie stuff in with other log files anyway.

4.4. Adding observability to a prototype:
idris2interchange
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This log volume has been a problem for me elsewhere, even without
structured logging, filling up eg my root filesystem with docker stdout
logs.

Now back to jq validation. . .

if i get that done. . . look for every logv call and report each one and
how many times it logged a value. this is in the direction of logging
metrics, without actually being that.

a pytest run now give 92000 idris2interchange log lines.

and now jq accepts it all.

so lets see if parsl.obserability.load_jsons can load it. it can, without
further change.

logs that have a v:

Next step is to figure out how task processing can be annotated to fit
into the general task flow findcommon style output. Let’s start with a
single line such as this without trying to add any broader context.

Make a new logv that lets the v field be named. That allows a single
association to be made. which is ok for this stage.

First lets format that task ID properly, without ‘PickleInteger’ in the
value.

so now log records look like this:

which I hope is enough to align with the rest of findcommon.

So add in an import for this log into getlogs and try it out:

and there it is.

Next, I’d like to get more in here. Specifically of interest for observ-
ability development is I’d like to get an event for the point where a task
message is received - even though at that point, its the beginning of a
span that we won’t know the task identity for until much later when
the payload has been depickled and the task_id extracted.

The approach is probably something like a two parter: - make some
span concept that has identities for all of its messages - tie that span to
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a task ID so that all its lines can get an htex_task_id widened on

This is an example of sending a join back in time. and an example of
having to have the definition somewhere that these things are related
- but that it doesn’t have to be in the logging code where we prefer
to be fast and stateless. Also a library call that finds an htex task id
on any record of a group and widens out all the others to have the
same id: look for “these keys” in groups identified by “these keys”
and make them global. (`widen_implication` or some functional-
dependency related name?). in this case, for the interchange log file,
`submit_pass_id` => `htex_task_id`, or if doing so at a higher
level `(dfk,executor,submit_pass_id)=>htex_task_id`

TODO: show task1 output before join. then implement join and show
task1 output with the rest of the decode span in there - the deserialisa-
tion of the task and execution of the matchmaker is shown now.

TODO: add in result handling span in the same way.

widening submit_pass_id using key implication widening after load-
ing/processing all the logs normally, which is what I’d expect if
adding in ad-hoc hack stuff outside of the core parsl log loaders. . .
has revealed some fixpoint related stuff: widening to htex_task_id
which is the actual known ID isn’t sufficient because the widening
of htex_task_id to parsl_task_id already happened. I can widen to
parsl_task_id OK because that implication has happened on the two
log lines that already have an htex task ID. Is that ok in general? do
I need fixpoints in general? something to keep an eye on. I think:
as long as there is one record to convey the join as having happened,
then a subsequent join can flesh that out. but if the join involves facts
that aren’t represented incrementally like that, then no. probably I can
contrive some examples.

4.4. Adding observability to a prototype:
idris2interchange
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4.5 pytest observing interchange vari-
ables

pytest htex task priority test wants to wait for interchange to have all
the submitted tasks - which happens asynchronously to submit calls
returning. it does that by logfile parsing. how does that fit into this
observability story: there’s a metric in my prototype for this value
(which I used in one of the other use cases here).

Can do this by re-parsing the interchange log value. also could (with
suitable configuration) attach a “pytest can see only metrics” log writer
that runs over a unix socket? in some sense, injecting the relevant ob-
servability path into the interchange code as a configured log handler.
that gives some motivation for the configurability section.

Also attaching a JSON log file to the interchange, and having a tail
reader of that. also needs special configuration of interchange I think.

TODO: do this use case. it’s probably a configurabilty use-case too
because I want to inject a special config into the interchange.

4.6 Academy agents can report their
own relevant logs via action

A prototype I made for Logan, and also showed to Ryan
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FIVE

DATA MODEL

[sections: abstract waffle about observability data model; the parsl
data model, concretely; the academy data model, conretely]

is often ad-hoc: people are writing code to run tasks, not building data
models represent the observable state of their tasks. so don’t bake that
into the system too much, and expect to be flexible.

there can be type-checking/linting gradual type check of emitted log
messages though: a couple of places: * generate the extras by helper
functions that force the record have certain fields * linting rules about
x implies y, that can be regarded as hard type checking rules or soft
rules depending on how you invoke such a tool

inherently chaotic research prototypes can benefit from observability -
as part of building and debugging them, rather than a post-completion
2nd generation feature - but that is impeded by requiring a strict sql-
like data model to exist, when the research prototype is not ready for
that. (see attitude that monitoring is something aimed at “users” later
on, not something that is aimed at “developers” understanding the be-
haviour of what they have created)

another data model example: in parsl checkpoint world, tasks are iden-
tified by their hashsum. there might be many tasks that run to compute
that result. when working cross-dfk checkpointing, the cross-dfk sort-
of-task ID is that hash sum, in the sense of correlating tasks that are
elided due to memoization with their original exec_done task in an-
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other run. (so hashsum is one form of task ID, parsl_dfk/parsl_task_id
is another - both legitimate but both different)

whats a span in this model - “any” thing that happens over a sequence
of logs that relates to Something. its not something that needs to be
reified in the model.

observability records do not need to have a timestamp, in the sense of
a log message. for example, see relations imported from a relational
database into observability records, in parsl monitoring import (cross-
ref usecase about plotting from monitoring database)

wide in the style of denormalised data warehouses, rather than heavily
normalised like more traditional relational model.

“user” applications adding their own events, and expecting those
events to be correlatable with everything else that is happening, is part
of the model: just as we might expect Globus Compute endpoint logs
to be correlatable with parsl htex logs, even though Globus Compute
is a “mere” user of Parsl, not a “real part” of Parsl.

5.1 python side query model

log entries by reference (in lists and dicts). deliberately mutating the
only copy of a log record, stored across multiple structs, is a feature
not a bug. lets us select and modify and then return to the original
structure. avoids copying the actual log records ever (except when
explicit) and instead deal in object references.

use comprehension-style query notation to be reminiscent of other
query languages.
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5.2 the argument for templating log mes-
sages

previous argument: avoids string interpolation if message will be dis-
carded.

new argument: we can use the template to find “the same” log message
even when its interpolations vary.

advanced level question: when a task changes state, should the tem-
plate be interpolated or not with the state names? because in my ex-
ample query, it is relevant to see those changes not as templated away.

5.3 Who allocates IDs and when

this is probably the fundamental problem of JOIN here, compared to
traditional observability which passes request IDs around up front.

5.4 Data types

• ‘0’ vs 0 as a task ID.

• UUID as 128 bit number, vs UUID as a case-sensitive/padding-
sensitive ASCII/UTF-8 string

• ordinal relations of text-named log levels (WARN, WARNING,
INFO, ERROR, . . . ) in various enumerations (although for
querying an overarching schema is probably possible for read-
only ordering use)

Whats the right canonicalisation attitude here? open question for me.

perhaps I should use rewrite_by_lambda(logs, keyname, lambda) to
change known fields into a suitable object representation: int for some
task IDs, UUIDs, log levels? then the type system deals with it? some
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of those could happen in the importers, some in the query, as its mod-
ular. I already do a rewrite to shift the created time down to 0 base, in
one of my plots. So the notion is there already.

5.5 Concurrency / distributed event
models - parsl issue #4021

“distributed” state machines are hard. see parsl-visualize bug #4021
for an example.

don’t try to make the data model force this. the events happen when
they happen. handle it on the query/processing side: you make what-
ever sense of it that you can. it’s not the job of the recording side to
force a model that isn’t true.

for example, in the context of #4021, we might want to project some
external opinion that running should “override” launched for a task,
that isn’t reflected in the emitting code/emitting event model at all,
based on an artifical “force to single thread” concept of task execu-
tion. in the same vein, the #4021 suspect tasks have negative time in
launched state. which sounds very weird for a non-distributed state
machine model.

or we might only want to visualize the running/end of running times
and forget overlaying any other state model onto things: the running
and running_ended times should at least be consistent wrt each other
as they happen to come from a single threaded bit of code.

see also that the parsl TaskRecord never records a state of running or
running_ended. despite it being a valid state. this already only exists
elsewhere in the system as a reconstructed state machine - not a real
single-threaded/non-distributed state machine. so parsl monitoring is
already a demonstration of the violation of this model.
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5.6 Optional and missing data in observ-
ability

log levels - INFO vs DEBUG

missing log files - eg. start with parsl.log, add in more files for more
detail

security - not so much the Parsl core use case, but eg GC executor
vs GC endpoint logs vs GC central services have different security
properties.

The observability approach needs to accomodate that, for any/all rea-
sons, some events won’t be there. There can’t be a “complete set of
events” to complain about being incomplete.

less data, well the reports in whatever form are less informative, to the
extent that the lack of data makes them so.

5.7 adding (or removing) a log field is a
lightweight operation

compare to adding more into parsl monitoring schema/message flows
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SIX

ALGEBRA OF REARRANGING AND
QUERYING WIDE LOGS

widening

widen-by-constant: if we import a new log file but we know its broader
context some other way, perhaps because it came from a known direc-
tory inside a parsl rundir (eg work queue’s )

joining

post-facto relationship establishment

relabelling - to make names align from multiple sources, or to add
distinction from multiple sources

look at relational algebra for phrasing and concepts

notion of identity and key-sequences: eg. parsl_dfk/parsl_task_id
is a globally unique identifier for a parsl task across time and
space, and so is parsl_dfk/executor_label/block_number or
parsl_dfk/executor_label/manager_id/worker_number – although
manager ID is also (in short form) globally unique. this is distinct
from the hierarchical relations between entities - although hierarchical
identity keys will often line up with execution hierarchy.

peter buneman XML keys stuff did nested sequences of keys for iden-
tifying xml fragments, c. year 2000
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joins can send info back in time: if we have a span but don’t know
which parsl task it belongs to at the start, only later, we can use joins
to bring that information from the future.

keys-imply-key operator: [l_keys] implies [r_key] over
[collection]:

• if any log selected by l_keys contains an r_key, that r_key
is unique (auto-check-that) and should be attached to ev-
ery log record selected by l_keys. Use case: widening the
task reception span in idris2interchange to be labelled with
htex_task_id

• this is functional dependency?

fixpoint notions that might need to be incorporated into the query
model in Python code (so that a fixpoint can be converged to across
non-local widening queries - see idris2interchange usecase notes)
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SEVEN

CODE

7.1 Code for log generation

Acknowledging observability as a first-order feature means we can
make big changes to code.

Every log message needs to be visited to add context. In many places a
bunch of that context can be added by helpers: for example, in my pro-
totype, some module level loggers are replaced by object-level loggers:
there is a per-task logger (actually LoggerAdapter) in the TaskRecord,
and logging to that automatically adds on relevant DFK and task meta-
data: at most log sites, the change to add that metadata is to switch
from invoking methods on the module-level logger object, invoking
them on the new task-level logger instead.

Some log lines bracket an operation, and to help with that, my proto-
type introduces a LexicalSpan context manager which can be used as
part of a with block to identify the span of work starting and ending.

Move away from forming ad-hoc string templates and make log calls
look more machine-readable. This is somewhat stylistic: with task ID
automatically logged, there is no need to substitute in task ID in some
arbitrary subset of task-related logs.

TODO: describe academy style that I tried out in PR #NNN:
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extra=myobj.log_extra() | { "some": "more" }

Parsl config hook for arbitrary log initialization - actually it can do
“anything” at process init and maybe that’s interesting from a different
perspective (because its a callback/plugin), but from the perspective of
this report I don’t care about non-log uses.

Be aware that there are non-Python bits of code generating various
logs. Work Queue (still structured) logs are one example. The output
from batch command submit scripts are another less structured one
that looks much more like a traditional chaotic output file.

7.1.1 Python API on logging side

Use Python-provided logger interface, with Python-provided
`extras` API.

per-class “log extras” method that generates an extras dict about this
object. that pushes on (like repr) it being the responsibility of the ob-
ject to describe itself, rather than being someone elses responsibility.

7.1.2 Configurability

A soft start is to let people opt into observability style logs - with most
performance hit coming from turning on json output, i think, it doesn’t
matter performance-wise too much about adding in the extra stuff on
log calls.

The current parsl stuff is not set up for arbitrary log configuration out-
side of the submit-side process: for example, the worker helpers don’t
do any log config at all and rely on their enclosing per-executor envi-
ronments to do it, which i think some do not.

htex interchange and worker logs have a hardcoded log config with a
single debug boolean.
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I’d like to do something a bit more flexible than adding more parame-
ters, that reflect that in the future people might want to configure their
handlers differently rather than using the JSONHandler.

eg. chronolog. pytest metrics observation in other section.

see Parsl monitoring radios configuration model. start prototyping
that. note that it doesn’t magically make arbitrary components that
aren’t compliant+Python redirectable. but thats fine in the modular
approach.

7.1.3 translating non-log-record-structured data
sources

part of this modularity work is that some modules produce log-like
information that looks superficially very different but that can be un-
derstood through the lens of structued log records.

7.1.3.1 Importing from Parsl monitoring

two approaches:

monitoring.json: abandons the SQL database component of conven-
tional Parsl monitoring and instead writes each monitoring message
out to a json file, giving an event stream.

replay-monitoring.db: turns a monitoring.db file into events. the sta-
tus, resource and block tables already looks like an event stream. This
gives an easy way to take existing runs and turn them into event streams
without needing to opt-in to any of the other JSON logging, or chang-
ing anything at all at runtime: anything new is entirely post-facto.
which fits the general concept of doing things post-facto in parsl ob-
servability.

the infrastructure for this already exists, which means that the query
side of this project can be used without modification of the execution-
side Parsl environment.

see earlier use case on priority visualization
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7.1.3.2 Work Queue `transaction_log`

this is a core part of seeing beyond the pure-Parsl code. it’s well struc-
tured but not JSON. translation into JSON is mostly syntactic. and can
be done line-by-line, aka streaming.

TODO: example log line

7.2 code for analysis

code that helps with analysis - eg implementing common code frag-
ments for graphs, queries, . . . ?
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EIGHT

THE REST

8.1 Other components

Some components aren’t Parsl-aware: for example work queue has no
notion of a Parsl task ID. and it runs its own logging system, that is
not Python, and so not amenable to Python monitoring radios.

Another example: swap out interchange impl for a different one with a
different internal model: a schema of events for task progress through
the original interchange doesn’t necessarily work for some other im-
plementation.

ZMQ generates log messages which have been useful sometimes and
these could be gatewayed into observability.

TODO: rephase this para and move to data model section on keys:

Lots of different identifier spaces, loosely structured, not necessarily
hierarchical: for example, an htex task is not necessarily “inside” a
Parsl task, as htex can be used outside of a Parsl DFK (which is where
the notion of Parsl task lives). An htex task often runs in a unix pro-
cess but that process also runs many htex tasks, and an htex task also
has extent outside of that worker process: there’s no containment re-
lationship either way.
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8.2 Scope for other hacking

should be easy to add other events - the core observability model
shouldn’t be prescriptive about what events exist, what they look like.
even though someone needs to know what their structure is.

should be easy to use them in analysis

should be easy to import some other event stream, in whatever format

notions of moving logs around to a place of analysis should not be
baked into the architecture. realtime options, file based options, . . .
- that is an area for experimentation (see Chronolog) and this work
should facilitate that rather than being prescriptive

storage and query of logs is also an area for experimentation. there are
lots of hosted commercial services. lots of small scale stuff:

eg. at small enough scale, parsing logs into a python session and using
e.g. set and list comprehensions is a legitimate way to analyse things
(rather than something awkwardly shameful that will be replaced by
The Real Thing later) - especially given Parsl users general exposure
to data science in Python.

Ignore Parsl Monitoring per-task resource monitoring and do some-
thing else that generates similar observability records. This was al-
ways some disappointment with getting WQ resource monitoring into
the Parsl monitoring database: what exists there that could be im-
ported?

Inside Python parts of Parsl, this data is available in realtime at the
point of logging as it goes to whatever LogHandler is running in each
python process. that isn’t true in general on the “event model” side of
things, though.

38 Chapter 8. The rest



Observability in the face of Modularity

8.3 Target audience

serious debugger/profiler people

not management-dashboard types - although management dashboards
absolutely should be creatable with this observability data.

8.4 Who wants this?

At least me.

Many users don’t come explicitly asking for monitoring-style informa-
tion but do ask how to understand whats going on inside. But then are
excited to use monitoring when it exists.

8.5 Build your own stack

Lots of observability commentary online talks as if you are building
your entire stack, to the extent that you care about observability. Parsl
is much more a pile of configurable components stuck together, all
with their own different options for observability/logging/monitoring,
and without easy ability for someone to add a consistent model
throughout the entire stack of code.

8.6 Performance measurement of patch
stack on 2025-10-27

pip install -e . && parsl-perf --config parsl/tests/
→˓configs/htex_local.py --iterate=1,1,1,10000

Running parsl-perf with constant block sizes (to avoid queue length
speed changes):
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master branch (165fdc5bf663ab7fd0d3ea7c2d8d177b02d731c5)
1139 tps

more-task-tied-logs: 1024

json-wide-log-records: 537

• but without initializing the JSONHandler: 1122

end of branch with all changes up to now: 385

8.7 Applying this approach for academy

As an extreme “data might not be there” – perhaps Parsl isn’t there at
all. What does this code and these techniques look like applied to a
similar but very different codebase, Academy, which doesn’t have any
distributed monitoring at all at the moment. There are ~100 log lines
in the academy codebase right now. How much can this be converted
in a few hours, and then analysed in similar ways?

The point here being both considering this as a real logging direction
for academy, and as a proof-of-generality beyond Parsl.

thoughts:

repr-of-ID-object might not be the correct format for logging: I want
stuff that is nice strings for values, but repr (although it is a string) is
more designed to look like a python code fragment rather than the core
value of an object. Maybe str is better, and maybe some other way
of representing the ID is better? The point is to have values that work
well in aggregate, database style analysis, not easy on the human eye.

academy logging so far focused on looking pretty on the console: eg
ANSI colour - that’s at the opposite end of the spectrum to what this
observability project is trying to log.

rule of thumb for initial conversion: whatever is substituted into the
human message should be added as an extras field.

message diagram - include here - for multi agent generator example I
made for Logan.
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8.8 other components to apply to

other components this might be applied to: Globus Compute.

Various related workflow systems that sit on top of Parsl.

Parsl contains two “mini-workflow-systems” on top of core Parsl:
parsl-perf and pytest tests. It could be interesting to illustrate how
those fit in without being a core part of Parsl observability.

8.9 alternate data stores

sqlite3 - i’ve had some success at small scale

Apache Kafka - Ryan

Diaspora Octopus - Ryan

Chronolog

8.10 anonymous/temporary identified
python objects

python objects don’t have a global-over-time ID. id() exists but it is
reused over time so awkward to use over a whole series of logs. so
some objects should get a uuid “just” for observability.

likewise e.g. gc endpoints don’t have a DFK ID, but endpoint
id/executor/block 0 isn’t a global-over-time ID: there’s a new block 0
at every restart? or is there a unique UEP ID each time that is enough?
I don’t think so because i see overlapping block-0 entries.
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8.11 See also

netlogger

my dnpc work, an earlier iteration of this. more focused on human log
parsing and so very fragile in the face of improving log messages, and
not enough context in the human component.

chronolog https://grc.iit.edu/research/projects/chronolog/

syslog, systemd logging, linux kernel ringbuffer/dmesg

buneman xml keys (mentioned above, c.2000)

8.12 modularity as a requirement for a
cough rich research landscape

a rich research landscape

competing priorities for productionworthiness

8.13 write out json logs (or other for-
mats) after performing query work

[for the query language section]

because maybe you’ve got somewhere better to process these results
than the Python runtime.

or maybe you processed them somewhere that wasn’t python and now
want them in Python. JSON as the interface layer.
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8.14 wheres the bottleneck - visualiza-
tion

based on template analysis - but could be based on anything that can
be grouped and identified.

8.15 cookbook section

similar to use cases section. or is usecases section. example fragments
of python code. perhaps focus on small fragments rather than complete
programs, accompanied by what we expect in, and what we expect out
of the fragment.

8.16 Review of changes made so far to
Parsl and Academy

This should be part of understanding what sort of code changes I am
proposing.

8.17 realtime considerations

my initial work was post-facto: copy log files around. but there are
plenty of mechanisms that should be able to deliver and analyse live,
eg built around Diaspora Octopus
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8.18 Browser UI

What might a browser UI look like for this?

compare parsl-visualize. compare scrolling through logs, but with
some more interactivity (eg. click / choose “show me logs from same
dfk/task_id”)

But the parsl-visualize UI is so limited, it only has a handful of graphs
to recreate. And some of them do not make sense to me so I would
not recreate them.

I am not super excited about building UIs but it would probably be
interesting to build something simple that can do a few queries and
graphs to demonstrate log analysis in clickable form.

And then I could put in the analyses I have made (other graphs/reports)
too, and also have it work with academy logs right away. and be ready
to pull in other JSON log files as a more advanced implementation
motivating JSON/wide logging.

Use python and matplotlib, no web-specific stuff, to promote people
who have done local scripting putting new plots into the UI, and pro-
mote using the graph code from the visualiser in own local scripting.

Make it able to address a whole collection of monitoring.db runs at
once - not only one chosen workflow.

Use a parsl-aware list of quasi-hierarchical key names to drive narrow-
down UI:

eg: pick dfk. pick: parsl task, parsl try, or executor, then executor task,
or executor then block then task.

htex instance/block/manager/worker/htex_task

htex instance/block/manager/worker is an execution location - how an
htex instance is identified is different between real Parsl and GC: in
real parsl, its a dfk id/executor label.

are all graphs relevant for all key selections? or should eg. a block
duration/count graph only appear in certain situations? eg if we’ve
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focused on one task-try, does that mean. . . no block status info and
so no block graph? graphs could be enabled by: “if you see records
like this, this graph is relevant”. That would allow eg. enabling htex
or WQ specific plots if we see (with more merged info) some htex or
WQ specific data. If we only see academy or GC logs, should only
report about them.

Recreate block vs task count graph from Matthews paper.

Aim for first iteration to work against current monitoring.db format so
it can be tried out in a separate install against production runs, distinct
from all other observability work. Exensibility there right from the
start to allow that to extend for importing new data and plugging in
plots and reports about new data.

two obvious non-monitoring.db extensions: what’s happening with
managers in blocks. whats happening with work queue. these are both
executor specific, and don’t fit the monitoring.db schema so well. so
clear demos of what could be done better.

8.19 Streaming-fold web UI

what operators can be build with a streaming-fold? to give live updates
as logs come in. (eg tail from a filesystem in the simplest case)

joins are the hard bit there, I think - but a fundep operator is at least
constrained in its behaviour: cache keyed-but-unjoined blocks, if we
see a key record, emit the whole block and forget it.

spend 1 day prototyping this.

counters, lists, a few graph types, drop downs/select fields
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8.20 Microsoft Power BI

As a simple example of how do we get this data into something actually
novel for academia. Dashboard friendly.

8.21 Concept: Universal personal log-
ging

all of my academy/globus endpoint/parsl runs going into a single log
space. permanently. no matter what the project, location, etc.

heres a logging use case/notion: universal personal log. all my GC
endpoints, parsl runs, academy runs, application submits, go into a
single log space that has everything I am running everywhere in the
science cloud, by default - eg. identified by my globus credential ID.
no separation whatsoever. no project distinction, etc.

what does that look like to work with on the query side. what does
that look like to query?

8.22 hourglass model (like IP) but with
several waists

the hourglass model is intended to provide a small number of plu-
gin/intergration points in the same way that the Internet Protocol does
for applications/application protocols vs networking technologies (for
example, HTTP over mobile phone network vs telnet over ARPANET
is then sufficient integration to run without more work: telnet over
mobile phone, HTTP over arpanet)

the pinchpoints are:

• python logging module

• JSON-style wide flat log records
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