

htex interchange in 3 languages

21 slides at 20s each

This is a talk of me screwing around, not me being paid to
do something.

I’m interested in vairous programming languages “for the
sake of it”

over my paid career I’ve worked in... Java, C, PHP, Haskell,
Fortran, groovy, dart (in arbitrary order)

interested in other/all languages

why care about different languages? they’re all turing-
complete / turing-equivalent: if you can write a program in
one, you can write it in any other - in that turing
completeness sense

more interesting is human expressivity: can i write things
easily / readably / maintainably?

US RSE slack channels: #R, #rust, #julia, #python
(as an example of what the parsl-adjacent community might

be expected to use) #javascript #mojo

 A language that doesn't affect the way you think
about programming, is not worth knowing.

-- alan perlis

https://web.archive.org/web/19990117034445/http://
www-pu.informatik.uni-tuebingen.de/users/
klaeren/epigrams.html

SIGPLAN Notices Vol. 17, No. 9, September 1982,
pages 7 - 13

lots of stuff in Parsl/GC stack is not in Python, despite
GC/Parsl being Python-oriented products:

libzmq is C
rabbitmq is Erlang
? numerics in fortran in many apps?

I’m going to talk about work I’ve done with different
languages and some of the fun I’ve had with Parsl
and some influences on production Parsl

talk about parsl inter-process *protocols* as a thing to design -
rather than just happening implicitly.

in the context of discussing different pieces of parsl running on
different versions (of Parsl and of Python)

motivated by a throwaway comment I made about thinking about
this: regard the component at the other end of a connection or
message path as written in an arbitrary other language - which
happens to be quite like the impl we are working on, but not
quite the same - because its a different Python or a different
Parsl or both. So dont’ let that similarity fool you into
complacency. not because I think we should be rewriting pieces
of production Parsl in other languages.

so “you should be able to rewrite the htex interchange in rust”

... but then? what would this really look like?
to rewrite the interchange in rust?

generated a bunch of parsl issues and PRs (by me and by others)

some real changes in production parsl motivated by this

list them here but get them spread through the talk in context,
ideally?

kevin’s PR #3871 / my issue #3022 - one zmq channel between
workers and interchange. this is after most of my work, so this is
the end of me keeping this code up to date with parsl master
June 2025

framing jumble: pickle lists, multipart zmq messages, multiple
single part zmq messages - is there an issue(s) for that? how to
fit into language context? just that serde made me pay attention
to this more, rather than it being mostly abandoned code from
years ago - so then on the serde slide for rust language?

manager ID is .. .a byte string .. .that is actually a fixed length
ASCII encoding of a hex piece. that is then used for OS
filenames etc. so what is actually valid here? Should we be fuzz
testing? what happens if i put ../whatever/.... ?

history: interchange already well separated as a
separate unix process, communicating via ZMQ.

this comes from early work on GC-like behaviour
where the interchange might have been running
remotely - talk to Yadu about that. that particular
line of development was abandoned but the
concepts sort of turned into the GC endpoint.

code example: start_local_interchange_process has
the word “local” there because of this distinction.

(mention work to remove multiprocessing fork? and
make things either use multiprocessing spawn or
explicit processes? not sure if thats relevant to this
talk?)

interchange architecture as far as this talk is concerned

[interchange is a separate unix process. i hacked the code to use
arbitrary command line, then Reid did it properly in PR #NNNN]

task + worker pool / dispatch - interchange logic
Pickle/JSON message format - built into Python
ZMQ - libZMQ
TCP/IP - OS

[JSON was removed in PR #NNNN by Kevin]
pickle is a whole adventure in itself - see PyCon LT 2024

https://www.youtube.com/watch?v=Qn-1hGLrzR0 The Ghosts of
Distant Objects

submit side (dataflow kernel or endpoint)

worker side
[worker side - 2 connections merged into 1 connection by Kevin in

PR #NNNN]

the languages:

Rust

Elixir

Idris2

for each language, a code sample, especially
highlighting one interesting thing about that
language

maybe include one syntax example for each
language to make things more concrete - but
ideally as part of a concept/lesson learned rather
than a standalone syntax example. because syntax
is not so interesting as far as this talk goes.

 Rust
Modern language targeting the space that traditionally you might use C

Single threaded (maybe real interchange is single threaded now? PR NNNN. If so, this drove some of that thinking /
feasibility study). Parsl has been a masterwork of race conditions that I've been spending the last 8 years
untangling: concurrency is hard to reason about and to a first approximation should be banned. Which is
superficially a funny thing to say when parsl is (from one view a concurrency library) but at the same time, that's
also the argument of the task based model, for users: concurrency is hard, here's a simpler safer concurrency
model.

ZMQ poll based. Explain poll as blocking call, not a "sit in loop hard looping and checking many conditions every 1ms"
- Unix select call introduced in... what year and Unix version?

Strongly typed. Avoid things like dict. This influence is (PR#NNNN) TaskRecord in parsl, which used to be an untyped
dict: tradeoff: for prototyping, can dump all kinds of stuff in there. But for maintainability and hackability: tooling
cannot tell you if you are trying to use an entry that "doesn't exist" - there is no notion of not existing. Tooling =
mypy. Or mouse over in IDE showing documentation. (Screenshot of Python showing a (strongly typed) variable
mouseover - if we didn’t know the type of this statically, we shouldn’t show this mouseover? better to show a
variable (where it isn’t clear what the object is and needs some type checking, rather than a direct constructor
where its extremely obvious what the constructor constructs)

Python does reference counting and garbage collection at runtime. Rust tries to do this statically. Which means you
have to reason about who owns objects so that you know when an object is finished with. That can be awkward to
get strictly right. But in the Parsl codebase in Python, it still makes sense to think sometimes about who owns an
object informally. (Example? For example who is allowed to make calls on a particular object? Rather than
chaotically through the source code? Or perhaps that having this kind of formality in general is useful - not so
much just ownership)

Rust is used in a bunch of python libraries now: see pydantic-core. (and in PR #3924, the first python 3.14 build error
is from pydantic-core not building right because of new versions of python...)

“ownership” model is sometihng you have to think about in other places - even with a garbage collector -- “memory
leaks” in a garbage collector model look like keeping. not just about freeing memory, also about what is safe to do
at what time.

free memory explicitly-ish (statically?) rather than garbage collector - from the haskell world, see
https://pusher.com/blog/latency-working-set-ghc-gc-pick-two/ about GC vs message routers especially. although
python reference counting maybe makes that not so bad?

ZMQ monitoring was really helpful - ZMQ is quite async, to the extent that it doesnt tell you when
a connection has been opened at the TCP layer. Which can then disguise some errors. It has
a monitoring layer which reports progress and I gatewayed that to log messages. I
recommend to the remaing core developers to implement this in mainline parsl . Show an
example of what messages I got.

polling not tight looping

(here and in idris2?)

Poll based stuff needs all your pollables to share a pollable representation. In ZMQ poll, can us
ZMQ sockets and Unix file descriptors. But in python impl, for example, can't poll on both a
ZMQ socket and a multiprocessing queue - which has led to some ugly busy loops in the
mainstream impl of Parsl in htex and in monitoring. which uses CPU, and when delays are
introduced to avoid that CPU burning, introduces latency on message processing. That can
give a recommendation/pressure to choose between concurrency structures.

mentioned radios in monitoring talk earlier

 Elixir
Erlang runtime, various languages on the front: also LFE and Gleam. Ruby inspired syntax.

erlang - telecoms style applications - headline?

Libraries also Erlang. If you are using htex via GC, then your tasks are already passing through an erlang
layer - rabbitmq(?)

Contrary to rust impl, this is *many* threaded / what the runtime calls a process, but it is not a unix-level
process

Erlang has principle that process should die easily and other stuff should deal with that. One thing parsl has
suffered from architecturally is threads and processes dying but then the rest of the pile not detecting
that. I've pushed a bit on detecting that in Parsl. But for example it's hard to poll on a multiprocessing
queue and also on a process exiting at the same time.

Python threads look like OS threads (which in Linux is very similar to being a Linux level process) - in
elixir/erlang, that isn't the case.

Also a principle I've become fond of: you should be eager to raise exceptions but don't try to catch and
handle them because you often can't/need to reason very hard about it

Thats their approach to concurrency. Messaging. Processes die easily. Tied processes - if one dies so does
a connected process (I have pushed that a bit into Parsl and recommend push more). other shared
structures built on that.

htex command client: shares a non-thread-safe structure between threads. can lead to weird behaviour -
rare enough that other devs won’t fix it. frequent enough I encounter it with my users. erlang runtime
puts external interactions on its own process/thread and uses internal messaging to talk to that [beam]
process from other [beam] processes more safely. [suggestion - use a cross-thread RPC internally to
talk to command client? for example, using ZMQ local connections? it’s more bureaucracy but it’s thread
safer?]

this doesn’t eliminiate race conditions - but its a model that can be easier to reason about than Python style
shared objects.

one informal effect of moving task launches to own thread (although that wasn’t the core intention - was
more about stack sizes) but has a more message based model now with queue.

(queues / message queue is the core concurrency primitive in beam) -- PR #NNNN
these BEAM level processes can run across cores and across machines. which means theres a scaling

possibility for having a multi-host megainterchange... if the process model was suitably architected. but
what is that architecture?

c.f. python asyncio/coroutines: much lighter-weight than Python OS threads (although less capable for
multiple CPUs). and yet again a different “poll language”.

issue #3761 - interchange should notice when submit process goes away (and vice-versa)
erlang/beam built for serialization - python object model is not (and I have had a lot of fun there ...)

ownership (from rust) and thinking about which threads own which things (from
elixir/erlang)

(not about who has a *lock* on a structure to prevent concurrent modification,
which is a slightly different notion)

examples of several concurrency problems in Parsl that were made easier by
thinking about things in this model:

i) “garbage collection” model introduced in #1512 introduced a whole load of race
conditions

ii) htex use of ZMQ: ZMQ is explicitly not thread safe - ZMQ channels must only be
accessed by one thread ever (unless you do some subtle non-python-level stuff
to move them between threads) - this is an outstanding problem that hits people
occasionally with “mystery hangs” and “zmq is not very good” accusations.

iii) more recent (DESC sponsored) shutdown of db manager - occasional problems
but recent stuff to do with log reduction exacerbated this I think - two threads in
DB manager, but only one of them should be responsible for talking to the
database.

(working on a patch, maybe a PR #3922 to fix that)

python’s object style doesn’t particularly discourage you from accessing single-
threaded stuff in multiple threads. for example, no type annotations on
self.attributes being accessed from multiple threads. which is sometimes fine,
but not if those attributes are not thread safe.

“message mover style”
- lots of bits of parsl move messages around between

queue-like structures.

- and have sometimes done other stuff on the way

- which conflates ownership of responsibility

- push towards message mover threads *only* doing
moving. not doing other stuff “by the way”.

(db manager shutdown race, example)
(i think some other examples in htex?)

run more threads!

parsl monitoring for example had one thread that was
both a zmq radio receiver and a udp radio receiver.
these were not done in a select/poll way, but
making a blocking call to wait, for each. and
alternating between the two, using cpu rapidly
polling one then the other.

two thread model -- what monitoring looks like now --
we can make a blocking call, and sit there for much
longer. we don’t have to alternate between
checking two things.

but then, because these two threads are separate,
it’s much easier to see that actually we often don’t
need the behaviours of one or both, and not start
the thread at all -- what looks like “adding threads”
actually resulted in removing load.

parsl-perf - realised current impl is a bit tricky in its
final result when things are non-linear. which turns
out to be the case.

perhaps that should be a curve output? to compare
with other curves? with doubling task count every
iteration up to limit, rather than trying to home in on
a limit - nicely gives a tasks/second value, but
doesn’t characterise change in behaviour as (for
example) number of outstanding tasks changes -
which i have observed (or number of workers to
dispatch to, for example - which i have not
observed)

there’s a parsl-perf talk at parslfest from stefan - talk
about that

chart of parsl-perf numbers? - with my iterative
changes. for idris2 interchange - peak 500-ish
tasks per second but drops down to less and can
also be a bit jumpy - perhaps because of GC?

measuring performance set me off on a whole other
project, doing linear modeling of various
performance options to try to understand when and
how they had effect.

(eg. when is worker prefetch good or bad?)

theres a talk and a writeup [link to all]

backpressure: noticed this especially with the elixir
impl because it scales less well.

but this is a problem everyone has with “many” task
workflows. (for some definition of many)

- “just” don’t submit too many tasks to Parsl.

and its part of the motivation for my billion task parsl
talk

[link here]

* align this with the performance slide thats at the end

Idris2
headline? purely functional dependantly and linearly typed language [its programming language research] - starting to

cross over with proof langauges / theorem provers.
Runtime on top of scheme. Syntax is very much Haskell but different - which standard way to do things (and Haskell

was designed to “serve as a basis for future research” - [influence box: that’s part of what leads to my thinking of
Parsl being a hackable pluggable core on which people build their own particular chaos] - many language features
in mainstream languages developed in the likes of Haskell

Much more experimental language. So a lot rougher to use. (eg. error message quality - something Rust people have
put a lot of work into; package management is rough; and roughnesses that maybe compiler bugs or
unimplemented compiler functionality - everyone here is used to Research Code) and i have slighly modified the
compiler stdlib. (although I’ve also done that for my own Python installs...)

UNIX side track - not what I was planning, but got distracted having a nice look at kernel stuff which I hadn't looked at
for a long timeUNIX poll based. ZMQ exposes a Unix FD for the purpose of using with unix poll. Also novel poll
types (I think pidfd? Or signal FD? Or both?) - pidfd lets us poll on other processes ending. So interchange ends
when the submitter ends. (Did I implement this parent-pid in mainline parsl? If so, pr #NNNN - but looping poll not
poll based poll) -- pidfd for doing that Erlang style “if that other process goes away, this process should too”.
Traditional parsl bugs of processes not going away.

poll, ioctl, special opens, special message formats - these are not “files”
TODO: can I do a bit of phantom typing on the FD to give me pollable? In progress now, maybe another compiler bug.

But it’s a nice “transcribe kernel rules into the type system, rather than using ints”.
Another slide - quick snapshot of other interesting things that can be represented as fds. FD abstracts a "kernel object"

not a file. (My preferred phrasing to "everything is a file" that Unix people like) eg poll for a raspberry pi IO pin
change.

So modelling event loop as fd based.
Single threaded.
Strongly typed like rust...But even more so.
Static checking resource management - not just that we want to ensure that free is called.
Polling thoughts here really made me think about common model for polling otherwise stuff doesn't work.
I used pidfd (signals for other reasons aren’t delivered to the right process but I would like to catch signals via fd too)
Classic example of dependent types is reasoning about vectors: like a list but type safe around length.
Example of linear types is resources rather than values: eg. memory buffer
built my own lower level libraries - pickle imp, zmq C binding, unix/file descriptor interfacing, bytes, logging - show

sizes
linear types: can check a value is used exactly once. quite similar to rust’s ownership and implicit frees when no longer

needed. but might imagine things like: “you have to do *something* with this task - don’t implicitly free it, because
implicitly freeing it is memory-safe but it’s not higher level safe: we should *never* silently discard a task. worst
case would be to log a critical error when doing so. but other thing we can do is dispatch it to a worker and then
insist we deal with a result? (which also involves some wire protocol). Maybe i can do some stuff around there in
the next few weeks?

(“implicit” frees can be bad because you don’t necessarily know when they’ll happen: plenty of parsl hangs, especially
around exit, have come from the __del__ method of objects; which fires in an arbitrary thread at an arbitrary time.
this works in parsl especially badly with ZMQ)

case style (see match syntax introduced in python 3.10 that
can be used in Parsl from next month...)

- I think rust has this too, not sure how much it does
exhaustiveness checking?

strong exhaustiveness checking of that pushes a lot on
“what to to do when something doesn’t match”. it isn’t
super clear what the right / tested behaviour is in the
interchange - 34 cases in idris2interchange where we just
abort the whole interchange (which causes Parsl to hang
-- see issue #NNNN about interchange going away).

mostly in Pickle deserialization, triggered by malformed
pickle messages.

- my personal style: “exhaustiveness checking” has led a
review style: “why doesn’t this `if` have an `else`?” that
catches lots of naive issues. (the `if` made an exception
not happen right there, but didn’t actually address the
behaviour when it didn’t fire)

didn’t really get much done with linear types. which
was the point of using idris2. oh well.

 Testing: test suite isn't set up for external process interchange very
much - not too surprising/something to blame parsl for. But in future,
if GC pushes Parsl towards putting different versions together, it's
probably interesting to push testing towards pulling different pieces
from different parsl codebases and trying to make them work
together - again principle that "older parsl were testing against might
be arbitrary code in arbitrary language" - not "well it's probably really
the same as the version we're testing now"

not testing eg: monitoring message flow (see other talk). priority
queue. lost workers. sending the right number of tasks to a worker.

(not testing almost anything off the basic path)

example: issue #3022/PR #3871 incompatibly changes the
worker/interchange protocol. so I stopped merging master branch at
this point. but people forever mumbling about using different
versions of parsl together (eg. building a container with workers and
expecting it to work across parsl versions).

maybe not so relevcant submit<->interchange, but is relevant
interchange<->workers

 Diagram: source code sizes, on stack

Mention scaling and parslperf results. And two follow on /
adjacent talks that grew out of this: billion task parsl (by
billion, I’m just picking an integer value for infinity) and
linear model approximation of scaling parameters

- how interchange didn’t seem to change speed, so i ended
up down a rathole wondering what else would change
rate? aka on my laptop, python interchange was not a
rate-limiter.

(spoiler: it’s logging)
(example, 15 t/s idris2 logging on, 400 t/s logging off)
(also give numbers for htex, init_logging flag)

billion task parsl: https://www.youtube.com/watch?
v=5brIeAvZG1c

performance analysis of other things:
http://www.hawaga.org.uk/ben/tech/parsl-r-perf/

