
Parsl Guts
Release 1.3.0-dev

Ben Clifford

Aug 21, 2024

CONTENTS

1 Introduction 1

2 A sample task execution path 3
2.1 a decorated app . 4
2.2 the data flow kernel 4
2.3 the interchange . 6
2.4 the process worker pool 7

3 Blocks 9

4 Serializing tasks with Pickle and dill 11
4.1 More info . 12

5 Elaborating tasks 13

6 understanding the monitoring database 15

7 modularity and plugins 17

8 Colophon 19

i

ii

CHAPTER

ONE

INTRODUCTION

Hello.

These are notes for a 3 hour course (6 x 25 minute sessions) for expe-
rienced Parsl users who want to level-up their ability to use Parsl or to
hack on the Parsl codebase by learning more about how Parsl works
inside. This is a contrast to the user guide, which focuses on what Parsl
looks like from the outside.

This text is not intended to be a comprehensive guide to all parts of
the Parsl codebase: there is plenty more to learn about.

I’ll try to include links to relevant external resources: source code,
other Parsl documentation, community talks, github issues, papers and
other research work.

1

Parsl Guts, Release 1.3.0-dev

2 Chapter 1. Introduction

CHAPTER

TWO

A SAMPLE TASK EXECUTION PATH

the codepath of a task from invoking an app to running on an HTEX
worker, and back again

this assumes a basic hpc-like environment. so lets have a sample con-
figuration involving htex and the slurm provider and not much else.

TODO: sample configuration, as defaulting as possible:

here’s an app that adds two numbers

TODO: app definition

and now we can initialise a Parsl context manager, invoke the app and
wait for its result.

TODO: with/invoke code blocks

Deliberately nothing fancy there: this is getting-started levels of Parsl
use.

Now lets pick apart what happens. I’m going to ignore: the
startup/shutdown process (what happens with parsl.load() and what
happens at the end of the with block), and I’m going to defer batch
system interactions to another section (TODO: hyperlink blocks)

3

Parsl Guts, Release 1.3.0-dev

2.1 a decorated app

first lets look at what we defined when we defined our app. Normally
Function definitions defines a function (or a method) in Python.
With the python_app decorator, instead that defines a PythonApp ob-
ject. That’s something we can invoke, like a function, but it’s going to
do something parsl specific.

look at definition of python app and see the __call__ definition.
when you invoke an app myapp(5,6), then the relevant PythonApp.
__call__ method is invoked. the decorator stashed away the actual
user defined body of code in an attribute, and it can pass that into
__call

2.2 the data flow kernel

we can have a look at that method and see that to “invoke an app”,
we call a method on the DataFlowKernel (DFK), the core object for a
workflow (historically following the God-object antipattern).

inside the DFK:

• create a task record and an AppFuture, and return that AppFu-
ture to the user

Then asynchronously:

• perform “elaborations” - see elaborations chapter

• send the task to an Executor (TODO:hyperlink class docstring).
in this case we aren’t specifying multiple executors, so the task
will go to the default single executor which is an instance of the
High Throughput Executor (TODO: hyperlink class docstring)
- which generates an executor level future

• wait for completion of execution (success or failure) signlled via
the executor level future

• a bit more post-execution elaboration

4 Chapter 2. A sample task execution path

https://docs.python.org/3/reference/compound_stmts.html#def
https://en.wikipedia.org/wiki/God_object

Parsl Guts, Release 1.3.0-dev

• set the AppFuture result

so now lets dig into the high throughput executor. the dataflow kernel
hands over control to whichever executor the user configured (the other
options are commonly the thread pool executor (link) and work queue
(link) although there are a few others included). but for this example
we’re going to concentrate on the high throughput executor. If you’re
a globus compute fan, this is the layer at which the globus compute
endpoint attaches to the guts of parsl - so everything before this isn’t
relevant for globus compute, but this bit about the high throughput
executor is.

The data flow kernel will have performed some initialization on the
high throughput executor when it started up, in addition to the user-
specified configuration at construction time - (TODO: perhaps this is
in enough of one place to link to in the DFK code?). for now, I’m
going to assume that all the parts of the high throughput executor have
started up correctly.

htex consists of a small part that runs in the user workflow process
(TODO: do I need to define that as a process name earlier on in this
chapter? it’s somethat that should be defined and perhaps there should
be a glossary or index for this document for terms like that?) and
several other processes.

The first process in the interchange (TODO: link to source code). This
runs on the same host as the user workflow process and offloads task
and result routing.

Beyond that, on each worker node on our HPC system, a copy of the
process worker pool will be running. These worker pools connect back
to the interchange using two network connections (ZMQ over TCP) -
so on the interchange process you’ll need 2 fds per node - this is a
common limitation to “number of nodes” scalability of Parsl. (see
issue #3022 for a proposal to use one network connection per worker
pool)

so inside htex.submit: we’re going to:

• serialize the details of the function invocation into a sequence of
bytes. this is non-trivial even though everyone likes to believe

2.2. the data flow kernel 5

https://github.com/Parsl/parsl/issues/3022

Parsl Guts, Release 1.3.0-dev

it is magic and simple. In a later chapter I’ll talk about this in
much more depth (TODO: link pickle)

• send that byte sequence to the interchange over ZMQ

• do a bit of book keeping

• create and return an executor future back to the invoking DFK -
this is how we’re going to signal to the DFK that the task is com-
pleted (with a result or failure) so it is part of the propagation
route of results all the way back to the user.

2.3 the interchange

The interchange matches up tasks with available workers: it has a
queue of tasks, and it has a queue of process worker pool managers
which are ready for work. so whenever a new task arrives from the
user workflow process, or when a manager is ready for work, a match
is made. there won’t always be available work or available workers so
there are queues in the interchange.

the matching process so far has been fairly arbitrary but we have
been doing some research on better ways to match workers and tasks.
(TODO: what link here? if more stuff merged into Parsl, then the PR
can be linkable. otherwise later on maybe a SuperComputing 2024
publication - but still unknown)

so now, the interchange sends the task over one of those two zmq-over-
TCP connections I talked about earlier. . . and we’re now on the worker
node where we’re going to run the task.

6 Chapter 2. A sample task execution path

Parsl Guts, Release 1.3.0-dev

2.4 the process worker pool

Generally, a copy of the process worker pool runs on each worker node.
(other configurations are possible) and consists of a few closely linked
processes:

the manager process which interfaces to the interchange (this is why
you’ll see a jumble of references to managers or worker pools in the
code: the manager is the externally facing interface to the worker pool)

worker processes - each worker process is a worker. there are a bunch
of configuration parameters and algorithms to decide how many work-
ers to run - this happens near the start of the process worker pool pro-
cess in the manager code. (TODO: link to worker pool code that cal-
culates number of workers)

the task arrives at the manager, and the manager dispatches it to a
free worker. it is possible there isnt’ a free worker, becuase of the
preloading feature for high throughput (TODO link to docstring) - and
the task will have to wait in another queue here - but that is a rarely
used feature.

the worker then deserialises the byte package that was originally seri-
alized all the way back in the user submit process: we’ve got python
objects for the function to run, the positional arguments and the key-
word arguments.

so at this point, we invoke the function with those arguments (link to
the f(*args, **kwargs) line)

and the user code runs!

it’s probably going to end in two ways: a result or an exception (actu-
ally there is a common third way, which is that it kills the unix-level
worker process for example by using far too much memory or by a
library segfault - or by the batch job containing the worker pool reach-
ing the end of its run time - that is handled, but we’re ignoring that
here)

now we’ve got the task outcome - either a Python object that is the
result, or a Python object that is the exception. We pickle that ob-

2.4. the process worker pool 7

Parsl Guts, Release 1.3.0-dev

ject and send it back to the manager, then to the interchange (over the
other ZMQ-over-TCP socket) and then to the high throughput excecu-
tor submit-side in the user workflow process.

Back on the submit side, there’s a high throughput executor process
running listening on that socket. It gets the result package and sets
the result into the executor future (TODO code reference). That is the
mechanism by which the DFK sees that the executor has finished its
work, and so that’s where the final bit of “task elaboration” (TODO:
link to elaboration chapter) happens - the big elaboration here would
be retries on failure, which is basically do that whole HTEX submis-
sion again and get a new executor future for the next try. (but other
less common elaborations would be storing checkpointing info for this
task, and file staging)

When that elaboration is finished (and didn’t do a retry), we can set
that same result value into the AppFuture which all that long time ago
was given to the user. And so now future.result() returns that results
(or raises that exception), back in the user workflow, and we’re done.

TODO: label the various TaskRecord state transitions (there are only
a few relevant here) throughout this doc - it will play nicely with the
monitoring DB chapter later, to they are reflected not only in the log
but also in the monitoring database.

8 Chapter 2. A sample task execution path

CHAPTER

THREE

BLOCKS

In the task overview, I assumed that process worker pools magically
existed on worker nodes. In this section, I’ll talk a little bit more about
how that actually happens, using Parsl’s provider abstraction.

The theme of this section is: get process worker pools running on some
nodes that we want to do the work.

We don’t need to describe the work (much), because once the workers
are running they’ll get their own work from the interchange, as I talked
about in the previous section.

LRM providers, batch jobs, workers, scaling strategies, batch job en-
vironments (esp worker_init)

9

Parsl Guts, Release 1.3.0-dev

10 Chapter 3. Blocks

CHAPTER

FOUR

SERIALIZING TASKS WITH PICKLE AND
DILL

TODO: an emphasis on the common parsl problems: (un)installed
packages, functions and exceptions

intro should refer to not regarding this as magic, despite most people
desperately hoping it is magic and then not trying to understand whats
happening. this is needs a bit of programming language thinking, way
more than routing “tasks as quasi-commandlines”

I’ll use the term pickling and serializing fairly interchangeably: seri-
alization is the general word for turning something like an object (or
graph of objects) into a stream of bytes. Pickling is a more specific
form, using Python’s built in Serializing tasks with Pickle and dill li-
brary (TODO: hyperlink pickle).

As I mentioned in an earlier section, (TODO: backlink hyperlink?)
when htex wants to send a function invocation to a worker, it serializes
the function and its arguments into a byte sequence, and routes that to
a worker, where that byte sequence is turned back into objects that are
in some sense equivalent to the original objects. Task results follow a
similar path, in reverse.

That serialization is actually mostly pluggable, but basically everyone
uses some variant of pickle (most often the dill library) because that’s
the default and there isn’t much reason to change.

11

Parsl Guts, Release 1.3.0-dev

For most things that look like simple data structures, pickling is pretty
simple. For example, almost anything that you can imagine some ob-
vious representation in JSON, plain pickle won’t have a problem.

There are a few areas where it helps to have some deeper understanding
of whats going on, so that you don’t run into “mystery pickling errors
because the magic is broken.”

TODO: review my pickle talk, figure out what is relevant or not.
maybe don’t need to talk about pickle VM opcodes, just the remote-
execution facility at a higher level? and the import facility at a higher
level? no need to talk about recursive objects - that’s not a user facing
problem (unless you’re trying to build your own pickle scheme)

4.1 More info

I’ve talked about Pickle in more depth and outside of the Parsl context
at PyCon Lithuania (TODO: link slides and video)

Proxystore - reference its use in Parsl, and reference a citation for just
proxystore. TODO

12 Chapter 4. Serializing tasks with Pickle and dill

CHAPTER

FIVE

ELABORATING TASKS

stuff that the DFK does to a task that isn’t “just run this task”

dependencies, retries, checkpointing, file staging, join_app joining,
monitoring resource wrapper

13

Parsl Guts, Release 1.3.0-dev

14 Chapter 5. Elaborating tasks

CHAPTER

SIX

UNDERSTANDING THE MONITORING
DATABASE

this should focus on making use of data in the monitoring database,
not on how monitoring is architected, exceptions

15

Parsl Guts, Release 1.3.0-dev

16 Chapter 6. understanding the monitoring database

CHAPTER

SEVEN

MODULARITY AND PLUGINS

which bits you can swap for other plugins: how and why

why includes sustainability work on different quality of
code/maintenance

if there’s a decision point that looks like a multi-way if statement - hav-
ing a bunch of choices is a suggestion that choices you might not have
implemented might also exist, and someone might want to put those
in. various plugin points then look like “expandable if” statements. a
good contrast is the launcher plugin interface, vs the hard-coded MPI
plugin interface (cross reference issue to fix that)

it’s also a place to plug in “policies” - that is user-specified decisions
(such as how to retry, using retry handlers) that take into account the
ability of our users to write Python code as policy specifications.

Parsl exists as a library within the python ecosystem. Python exists.

Doing that sort of stuff is what I’d expect as part of moving from being
a tutorial-level user to a power user.

17

Parsl Guts, Release 1.3.0-dev

18 Chapter 7. modularity and plugins

CHAPTER

EIGHT

COLOPHON

Written in rst

Rendered with sphinx

Edited with vi and vscode

This text was prepared against Parsl version 2024.08.19

19

	Introduction
	A sample task execution path
	a decorated app
	the data flow kernel
	the interchange
	the process worker pool

	Blocks
	Serializing tasks with Pickle and dill
	More info

	Elaborating tasks
	understanding the monitoring database
	modularity and plugins
	Colophon

