
Wide event
observability prototype

report

Ben Clifford

Nov 28, 2025

CONTENTS

1 Introduction 1
1.1 What exists in Parsl now? 2
1.2 Diagram . 3
1.3 Concept: Universal personal logging 4
1.4 Target audience . 4
1.5 Modularity . 5

1.5.1 Modularity as a requirement for a rich re-
search landscape 5

1.5.2 Hourglass model with several waists 6
1.6 High level structure of this project 6

2 The data model 7
2.1 Introduction to wide events 7
2.2 What exists now: Parsl python logs vs Parsl monitor-

ing records . 7
2.3 Optional and missing data in observability 8
2.4 Data types . 9
2.5 Distributed state machines - parsl issue #4021 10
2.6 commercial observability vendors 10
2.7 The argument for templating log messages 11
2.8 Objects and spans 11
2.9 Who allocates IDs and when 12
2.10 Other components 12

i

3 Generating wide records 15
3.1 What exists now 15

3.1.1 Parsl . 15
3.1.2 Academy 16

3.2 New Python Code for log generation 16
3.2.1 Python API on logging side 17
3.2.2 anonymous/temporary identified python ob-

jects . 17
3.2.3 Contributed: Modifying academy to gener-

ate wide events 18
3.3 Translating non-wide-event sources 18

3.3.1 Using Parsl monitoring events as wide logs 18
3.3.2 Using Work Queue transaction_log as a

wide log source 19
3.4 Adventure: adding observability to a prototype:

idris2interchange 19
3.5 Performance measurement of patch stack on 2025-

10-27 . 22
3.6 Idea: Parsl resource monitoring on a host-wide basis 23
3.7 Idea: worker node dmesg 23
3.8 Idea: automatic instrumentation 23

4 Moving wide records around 25
4.1 comparison to parsl logging 25
4.2 comparison to parsl monitoring 26
4.3 Python Configurability 26
4.4 Adventure: Wide records stored as JSON in files . . 27
4.5 Moving in realtime 27
4.6 Adventure: Diaspora Octopus 28
4.7 Idea: Chronolog 28
4.8 Adventure: pytest observing interchange variables . 29
4.9 Adventure: Academy agents can report their own rel-

evant logs via action 29

5 Analysing wide records 31
5.1 Visualization for task prioritisation 31
5.2 Task flow logs through the whole system 33
5.3 Algebra of rearranging and querying wide events . . 35

ii

5.3.1 keys imply key operator 36
5.4 code for analysis 37
5.5 Adventure: Browser UI 37

5.5.1 Idea: Streaming-fold web UI 38
5.6 python side query model 39
5.7 academy visualization 39
5.8 HTEX vs WQ questions 39
5.9 Other record storage systems 40
5.10 type checking event schemas 40
5.11 Write out json logs (or other formats) after perform-

ing query work . 40

6 Adventure: Academy vs Globus Compute 41
6.1 getting started . 41
6.2 Launching an academy agent 42
6.3 Looking at GC-endpoint-side academy logs 44

7 The rest 47
7.1 Debugging monitoring performance as part of devel-

oping this prototype 47
7.2 See also . 54
7.3 wheres the bottleneck - visualization 55
7.4 Review of changes made so far to Parsl and Academy 55
7.5 Applying this approach for academy 55

8 Acknowledgements 57

Index 59

iii

iv

CHAPTER

ONE

INTRODUCTION

These are notes about my current iteration of a Parsl and Academy ob-
servability prototype. It is intended to help with plugin style integra-
tion between those two components and an open collection of friends
including Globus Compute, Diaspora and Chronolog.

As an abstract concept: “Observability is a measure of how well in-
ternal states of a system can be inferred from knowledge of its ex-
ternal outputs.” (https://en.wikipedia.org/wiki/Observability). In the
context of this project, it means outputting enough information about
the system to understand why bugs happen in the system.

There is plenty to read about Observability on the web: google around
for more info.

This is often neglected as part of the core functionality of a research
prototype, as demonstrations are run in controlled environments with
the original authors both ready to respond to the slightest problem with
copious time, and ready to restart everything from scratch repeatedly
until the desired outcome is achieved.

As soon as that prototype is forced into production, those two prop-
erties evaporate and the need for observability manifests: both users
and legacy developers need to understand what is happening in this
suddenly wider and more hostile world.

In the Parsl world that exists now as two separate systems: Log files
and Parsl Monitoring. This report will explore ways in which they can

1

https://en.wikipedia.org/wiki/Observability

Wide event observability prototype report

be usefully unified and extended.

This project builds on experiences debugging Parsl within the DESC
project, as well as work sponsored by NSF and CZI understanding
pluggability and code maturity as they affect architectural decisions.
As a concurrent activiy, I have used some of this experience to push
changes into the Academy codebase to support its move towards pro-
duction.

A distant vision is a project-wide or personal-space-wide observability
system – but it is important to acknowledge that this is a distant and
vague vision, and that actually what I want to happen is stuff on the
scale of weeks to months that is usable on that timescale, with others
left to take up that distant vision if desired.

This report attempts to describe abstract concepts but ground them
in practice and concrete code-driven examples. This report also tries
to give open questions and opportunities that might be interesting for
other people to work on.

How to try this out? Because I want you to try this out. It’s in my
Parsl benc-observability branch. I will try to label use cases as
expected to work or not, and in what context. There will also be some
academy-related stuff in that branch, with the intention that it moves
elsewhere as productionised.

1.1 What exists in Parsl now?

Parsl has two observability approaches: file-based logging and Parsl
Monitoring.

File based logging is very loosely structured. Log lines are intended
for direct human consumption, with minimal automated processing:
for example, “grepping the logs”. Within Parsl there is a variety of
log formats, usually depending on the component which generated
the log. Logs are directed to a filesystem accessible by the particu-
lar component, which in practice they are especially awkward without

2 Chapter 1. Introduction

Wide event observability prototype report

a shared file system. It is easy to add a new log line, by writing what
is effectively a glorified print statement.

Parsl Monitoring generates monitoring events that are not intended
to be seen by humans. Instead they are conveyed to a Monitoring
Database Manager which munges them into a relational schema. This
schema is then typically accessed by users via futher processing for
pre-prepared visualization or ad-hoc queries designed by data-science
aware power users. These monitoring events can be conveyed by a
pluggable interface, for example over the network, and in contrast
to the logging approach above, distributed filesystem access (in the
broadest sense) is not required. The strict SQL schema makes the data
model extremely hard to extend ad-hoc.

Parsl Monitoring was also implemented with a fixed queries / dash-
board mindset: one set of views that is expected to be sufficient. As
time has shown, people like to make other outputs from this data.

This report builds on both of these approaches. I’ll talk about more
details in later sections.

1.2 Diagram

of the components/flow.

to distinguish the pieces of my work, and also to distinguish the pieces
of what might be substituted where.

specific emphasis that this is common techniques, not a single imple-
mentation or protocol standards or single anything.

Python logger
API ----> JSON structured logs \

|--> log␣
→˓movement --> Python-based query model ␣
→˓--> graphs/reports

non-JSON structured logs / to one␣
→˓place --> post facto schema normalisation

(continues on next page)

1.2. Diagram 3

Wide event observability prototype report

(continued from previous page)

(eg. WQ, Parsl monitoring) classically␣
→˓files, --> data-structure based queries

but eg ryan/
→˓kafka

logan␣
→˓demo/agent polling

1.3 Concept: Universal personal logging

Imagine all of my academy/globus endpoint/parsl/application runs go-
ing into a single log space. permanently. no matter what the project,
location, etc.

heres a logging use case/notion: universal personal log. all my GC
endpoints, parsl runs, academy runs, application submits, go into a
single log space that has everything I am running everywhere in the
science cloud, by default - eg. identified by my globus credential ID.
no separation whatsoever. no project distinction, etc.

what does that look like to work with on the query side. what does
that look like to query?

1.4 Target audience

This project is mainly aimed at systems integrators and application
builders who are expecting to perform serious debugging and profiling
work at a deep technical level. It should support other use-cases such
as management-friendly dashboards.

These users will often have integrated several research-quality
projects: for example, Academy submitting into Globus Compute. As
systems integrators and application builders, they aren’t directly inter-
ested in the borders these individual projects have built around them-
selves, but want to understand (for example) where their simulation

4 Chapter 1. Introduction

Wide event observability prototype report

task is inside the whole ad-hoc stack. This mirrors the microcosm of
Parsl existing as a pile of configurable and pluggable compponents,
each with their own observability options.

Many of the target audience do not, in my experience, come asking di-
rectly for observability as a feature. Instead they come with questions
such as “Parsl is slow - how can I make it faster?”. Without under-
standing the statement “Parsl is slow” (which as often as not turns out
to be “my application code is slow”), it is hard to make progress on
“how can I make it faster?”

1.5 Modularity

This report emphasises modularity as a core tenet, to the extent that a
single product codebase is not particularly an end goal.

1.5.1 Modularity as a requirement for a rich re-
search landscape

A “rich research landscape” means many components, each with com-
peting priorities for productionworthiness vs research. TODO: cite the
work done as part of NSF/CZI sustainability grants about recognising
the difference between goals rather than ignoring them.

Expecting a single observability system to provide all needs is un-
likely to succeed in such a varied research-style environment: while
some users are tolerant of appalling code quality in exchange for in-
teresting research results, those same users require production quality
from other components in the same stack; and those tolerances vary
with every use case.

1.5. Modularity 5

Wide event observability prototype report

1.5.2 Hourglass model with several waists

the hourglass model is intended to provide a small number of plu-
gin/intergration points in the same way that the Internet Protocol does
for applications/application protocols vs networking technologies (for
example, HTTP over mobile phone network vs telnet over ARPANET
is then sufficient integration to run without more work: telnet over
mobile phone, HTTP over arpanet)

The hourglass waists are:

• python logging system: any Python code can send log mes-
sages to the built-in logging system and any Python code can
register to receive any log messages. This can support compo-
nents that live in the Python ecosystem. That includes enough
of the current ecosystem to consider specially, but not enough
to be universal: for example, when running task through Parsl’s
Work Queue executor, a substantial piece of execution happens
in code written in the C programming language.

• JSON records: a second point of modularity is representing ob-
servability information as JSON objects. This is flexible data
format which complements the Python code approach of the
previous waist. Often observability information which can-
not flow through the Python logging API can flow as JSON
records.

1.6 High level structure of this project

This report breaks observability into four rough parts:

• A data model of wide event records: The data model

• Creating wide records: Generating wide records

• Moving those event records around: Moving wide records
around

• Analysing those records: Analysing wide records

6 Chapter 1. Introduction

CHAPTER

TWO

THE DATA MODEL

2.1 Introduction to wide events

as JSON objects, as Python LogRecords, as roughly isomorphic struc-
tures

wide in the style of denormalised data warehouses, rather than heavily
normalised like more traditional relational model.

they should be wide and flat: do not create elaborate object graphs.
key/value, with values being simple.

is often ad-hoc: people are writing code to run tasks, not building data
models represent the observable state of their tasks. so don’t bake that
into the system too much, and expect to be flexible.

2.2 What exists now: Parsl python logs
vs Parsl monitoring records

Especially for this chapter, how both of those can be embedded as wide
events

Parsl monitoring structured records are equally valid examples of ex-
isting structured records, alongside with equal value to logging as dif-

7

Wide event observability prototype report

ferently structured records.

Original Parsl monitoring prototype was focused on what is happening
with Parsl user level concepts: tasks, blocks for example as they move
through simple states. Anything deeper is part of the idea of “Parsl
makes it so you don’t have to think about anything happening inside”.
Which is not how things are in reality: neither for code reliabilty or
for performance.

often want to debug/profile whats happening inside parsl rather than
inside the user workflow - and the distinction between the two is often
unclear.

2.3 Optional and missing data in observ-
ability

log levels - INFO vs DEBUG

missing log files - eg. start with parsl.log, add in more files for more
detail

Security - not so much the Parsl core use case, but eg GC executor
vs GC endpoint logs vs GC central services have different security
properties. Or in Academy, the hosted HTTP exchange.

The observability approach needs to accomodate that, for any/all rea-
sons, some events won’t be there. There can’t be a “complete set of
events” to complain about being incomplete.

less data, well the reports in whatever form are less informative, to the
extent that the lack of data makes them so.

This optionality aligns with different components adding their own
logs, if they happen to be there.

Adding (or removing) a log field is a lightweight operation

8 Chapter 2. The data model

Wide event observability prototype report

2.4 Data types

data types don’t matter much for human observation. but for machine
processing they do. so this section has some relevance when thinking
about the Analysis section later.

Both JSON and Python representation can support a range of types.
But richer data types can exist. What’s interesting for analysis is pri-
marily relations like equality and ordering, which are implicitly not
string-like in a lot of cases. For example:

• string vs int: ‘0’ vs 0 as a Parsl task ID. Even Parsl source code
is not entirely clear on when a task ID is a string and when it
is an int, I think. Normalisation example: “03” vs “3”. Rundir
IDs are usually at least 3 digits long. Is rundir “000” the same
as rundir 0?

• UUID as 128 bit number, vs UUID as a case-sensitive/padding-
sensitive ASCII/UTF-8 string. uuids should be used more
in this work - they were invented for the purpose of this
kind of distributed identification https://en.wikipedia.org/wiki/
Universally_unique_identifier#History https://www.rfc-editor.
org/rfc/rfc9562.html Normalisation example of string form:
case differences.

• ordinal relations of text-named log levels (WARN, WARNING,
INFO, ERROR, . . .) in various enumerations (although for
querying an overarching schema is maybe possible for read-only
ordering use)

Whats the right canonicalisation attitude here? open question for me.

Cannot expect emitters to conform to some defined canonical form.

perhaps I should use rewrite_by_lambda(logs, keyname, lambda) to
change known fields into a suitable object representation: int for some
task IDs, UUIDs, log levels? then the type system deals with it? some
of those could happen in the importers, some in the query, as its mod-
ular. I already do a rewrite to shift the created time down to 0 base, in
one of my plots. So the notion is there already.

2.4. Data types 9

https://en.wikipedia.org/wiki/Universally_unique_identifier#History
https://en.wikipedia.org/wiki/Universally_unique_identifier#History
https://www.rfc-editor.org/rfc/rfc9562.html
https://www.rfc-editor.org/rfc/rfc9562.html

Wide event observability prototype report

2.5 Distributed state machines - parsl is-
sue #4021

“distributed” state machines are hard. see parsl-visualize bug #4021
for an example.

don’t try to make the data model force this. the events happen when
they happen. handle it on the query/processing side: you make what-
ever sense of it that you can. it’s not the job of the recording side to
force a model that isn’t true.

for example, in the context of #4021, we might want to project some
external opinion that running should “override” launched for a task,
that isn’t reflected in the emitting code/emitting event model at all,
based on an artifical “force to single thread” concept of task execu-
tion. in the same vein, the #4021 suspect tasks have negative time in
launched state. which sounds very weird for a non-distributed state
machine model.

or we might only want to visualize the running/end of running times
and forget overlaying any other state model onto things: the running
and running_ended times should at least be consistent wrt each other
as they happen to come from a single threaded bit of code.

see also that the parsl TaskRecord never records a state of running or
running_ended. despite it being a valid state. this already only exists
elsewhere in the system as a reconstructed state machine - not a real
single-threaded/non-distributed state machine. so parsl monitoring is
already a demonstration of the violation of this model.

2.6 commercial observability vendors

honeycomb, or built into AWS as cloudwatch

more ad-hoc construction, less buy in from components, rather than
all working together to build a single platform, which is often how the
commercial observability usecases are described.

10 Chapter 2. The data model

Wide event observability prototype report

OpenTelemetry as a standard. How does this related to that standard?

TODO: maybe opentelemetry is better in Moving wide records around

2.7 The argument for templating log
messages

previous argument: avoids string interpolation if message will be dis-
carded.

new argument: we can use the template to find “the same” log message
even when its interpolations vary.

advanced level question: when a task changes state, should the tem-
plate be interpolated or not with the state names? because in my ex-
ample query, it is relevant to see those changes not as templated away.

2.8 Objects and spans

it is a “thing we want to talk about”, as a very weak notion.

weak notion of “object” but it does exist: for example, logs that are
about a particular Parsl task, or a particular HTEX worker, or a partic-
ular batch job.

multi-attribute keys - sometimes hierarchical but that isn’t required.

eg. contrasting parsl task IDs vs parsl checkpoint IDs: in parsl check-
point world, tasks are identified by their hashsum. there might be many
tasks that run to compute that result. when working cross-dfk check-
pointing, the cross-dfk sort-of-task ID is that hash sum, in the sense of
correlating tasks that are elided due to memoization with their original
exec_done task in another run. (so hashsum is one form of task ID,
parsl_dfk/parsl_task_id is another - both legitimate but both different)

cross-ref “span” concept from other places in more broad Observabil-
ity.

2.7. The argument for templating log messages 11

Wide event observability prototype report

2.9 Who allocates IDs and when

This is probably the fundamental problem of JOIN here, compared to
traditional observability which passes request IDs around up front.

In a traditional distributed object model system, you would use some-
thing like UUIDs everywhere. However, this observability work is not
observing a traditional distributed object model system.

note that in parsl some IDs are deliberately not known across the sys-
tem at runtime because it would be expensive to correlate them in re-
altime, and that is not necessary for the executing-tasks part of Parsl,
even though its necessary for the understanding-how-that-task-was-
executed section.

2.10 Other components

rewrite this to not be parsl-centric but instead talk about integrating
“objects” from different components even though those components
are not strongly aware of each other. wq vs parsl task id is a nice
example: regularly used, but log files are different formats, identifier
space is different, cardinality of tasks is different: one parsl task !=
one wq task.

Some components aren’t Parsl-aware: for example work queue has no
notion of a Parsl task ID. and it runs its own logging system, that is
not Python, and so not amenable to Python monitoring radios.

ZMQ generates log messages which have been useful sometimes and
these could be gatewayed into observability.

inherently chaotic research prototypes can benefit from observability -
as part of building and debugging them, rather than a post-completion
2nd generation feature - but that is impeded by requiring a strict sql-
like data model to exist, when the research prototype is not ready for
that. (see attitude that monitoring is something aimed at “users” later
on, not something that is aimed at “developers” understanding the be-
haviour of what they have created)

12 Chapter 2. The data model

Wide event observability prototype report

“user” applications adding their own events, and expecting those
events to be correlatable with everything else that is happening, is part
of the model: just as we might expect Globus Compute endpoint logs
to be correlatable with parsl htex logs, even though Globus Compute
is a “mere” user of Parsl, not a “real part” of Parsl.

should be easy to add other events - the core observability model
shouldn’t be prescriptive about what events exist, what they look like.
even though someone needs to know what their structure is.

to that end, there is no core schema, either formal or informal.

observability records do not even need to have a timestamp, in the
sense of a log message. for example, see relations imported from a
relational database into observability records, in parsl monitoring im-
port (crossref usecase about plotting from monitoring database)

Parsl contains two “mini-workflow-systems” on top of core Parsl:
parsl-perf and pytest tests. It could be interesting to illustrate how
those fit in without being a core part of Parsl observability.

Parsl monitoring visualisation and Parsl logging are both completely
unaware of the application level structure of the mini-workflows run
by parsl-perf and pytest, beyond what is expressed to the DFK as
DAG fragments: there’s nothing to separate out parsl-perf iterations,
or pytest tests.

In the context of pytest, see: Adventure: pytest observing interchange
variables

Colmena

2.10. Other components 13

Wide event observability prototype report

14 Chapter 2. The data model

CHAPTER

THREE

GENERATING WIDE RECORDS

3.1 What exists now

3.1.1 Parsl

Parsl logs - not well structured, for example overlapping DFKs are
not well represented, and actions to do with different tasks can be in-
terleaved without being clearly separated/identified. Globus Compute
deliberately makes them even less structured, by jumbling up the file-
based logs of multiple runs into one directory

Parsl monitoring - well structured but very hard to modify. It is easy
to query for questions that it can answer, and hard to use for anything
more. Users are generally interested in using it when they discover it,
but it suffers from a history of being built as student demo projects
dropped into production. An example of a question it cannot answer:
What is the parsl_resource_specification for a task?

Work Queue Logs - well structured. Ignored by Parsl monitoring.
Hard to correlate with monitoring.db: Work Queue uses work queue
task IDs, but Parsl Monitoring uses Parsl Task and Try IDs. Corre-
lating those is a motivating use case for this Observabilty projected.
[TODO: make that correlation as an explicit use-case section, explain-
ing what needs to change, how it is done manually now]

15

Wide event observability prototype report

3.1.2 Academy

As a more in-development project, it is much better placed to make
observability records from the start as a first-order production feature.

3.2 New Python Code for log generation

Acknowledging observability as a first-order feature means we can
make big changes to code.

Every log message needs to be visited to add context. In many places a
bunch of that context can be added by helpers: for example, in my pro-
totype, some module level loggers are replaced by object-level loggers:
there is a per-task logger (actually LoggerAdapter) in the TaskRecord,
and logging to that automatically adds on relevant DFK and task meta-
data: at most log sites, the change to add that metadata is to switch
from invoking methods on the module-level logger object, invoking
them on the new task-level logger instead.

Some log lines bracket an operation, and to help with that, my proto-
type introduces a LexicalSpan context manager which can be used as
part of a with block to identify the span of work starting and ending.

Move away from forming ad-hoc string templates and make log calls
look more machine-readable. This is somewhat stylistic: with task ID
automatically logged, there is no need to substitute in task ID in some
arbitrary subset of task-related logs.

TODO: describe academy style that I tried out in PR #NNN:

extra=myobj.log_extra() | { "some": "more" }

Parsl config hook for arbitrary log initialization - actually it can do
“anything” at process init and maybe that’s interesting from a different
perspective (because its a callback/plugin), but from the perspective of
this report I don’t care about non-log uses.

Be aware that there are non-Python bits of code generating various
logs. Work Queue (still structured) logs are one example. The output

16 Chapter 3. Generating wide records

Wide event observability prototype report

from batch command submit scripts are another less structured one
that looks much more like a traditional chaotic output file.

3.2.1 Python API on logging side

Use Python-provided logger interface, with Python-provided
`extra` API.

per-class “log extras” method that generates an extra dict about this
object. that pushes on (like repr) it being the responsibility of the ob-
ject to describe itself, rather than being someone elses responsibility.

3.2.2 anonymous/temporary identified python
objects

python objects don’t have a global-over-time ID. id() exists but it is
reused over time so awkward to use over a whole series of logs. so
some objects should get a uuid “just” for observability - UUIDs were
invented for this.

likewise e.g. gc endpoints don’t have a DFK ID, but endpoint
id/executor/block 0 isn’t a global-over-time ID: there’s a new block 0
at every restart? or is there a unique UEP ID each time that is enough?
I don’t think so because i see overlapping block-0 entries.

repr-of-ID-object might not be the correct format for logging: I want
stuff that is nice strings for values, but repr (although it is a string) is
more designed to look like a python code fragment rather than the core
value of an object. Maybe str is better, and maybe some other way
of representing the ID is better? The point is to have values that work
well in aggregate, database style analysis, not easy on the human eye.

3.2. New Python Code for log generation 17

Wide event observability prototype report

3.2.3 Contributed: Modifying academy to gener-
ate wide events

summarise the PRs I merged already

cross-ref event graph in analysis section as something enabled by this

3.3 Translating non-wide-event sources

Part of this modularity work is that some modules produce event-like
information that looks superficially very different but that can be un-
derstood through the lens of structured event records.

3.3.1 Using Parsl monitoring events as wide logs

two approaches:

monitoring.json: abandons the SQL database component of conven-
tional Parsl monitoring and instead writes each monitoring message
out to a json file, giving an event stream.

replay-monitoring.db: turns a monitoring.db file into events. the sta-
tus, resource and block tables already looks like an event stream. This
gives an easy way to take existing runs and turn them into event streams
without needing to opt-in to any of the other JSON logging, or chang-
ing anything at all at runtime: anything new is entirely post-facto.
which fits the general concept of doing things post-facto in parsl ob-
servability.

the infrastructure for this already exists, which means that the query
side of this project can be used without modification of the execution-
side Parsl environment.

see earlier use case on priority visualization

18 Chapter 3. Generating wide records

Wide event observability prototype report

3.3.2 Using Work Queue transaction_log as a
wide log source

this is a core part of seeing beyond the pure-Parsl code. it’s well struc-
tured but not JSON. translation into JSON is mostly syntactic. and can
be done line-by-line, aka streaming.

TODO: example log line

note that work queue task IDs are not Parsl task IDs: data from the
monitoring database cannot be correlated with data from the work
queue transaction log! (without further help from the parsl JSON log
files. . .)

3.4 Adventure: adding observability to a
prototype: idris2interchange

Another example: swap out interchange impl for a different one with a
different internal model: a schema of events for task progress through
the original interchange doesn’t necessarily work for some other im-
plementation.

idris2interchange - i want to debug stuff, not be told by the observabil-
ity system HAHA we don’t support your prototyping. in some sense
thats exactly the time I need the observability system to be helping me.
not later on when it all works.

idris2interchange project is not aimed at producing production code.
ever. in that sense it is very similar to some student projects that in-
teract with parsl.

mini-journal: what did i have to do to support idris2 logging? * make
log records JSON format instead of textual - prior format was times-
tamp / string. theres a json library but to start with this records are
so simple i’ll template them in. * also already had a simple log-of-
value mechanism in there already which readily translates to logging
a template, a full message, and the value as separate fields.

3.4. Adventure: adding observability to a prototype:
idris2interchange

19

Wide event observability prototype report

now there are json records going to the console. I don’t trust the string
escaping, but i’ll deal with that ad-hoc. but also: needs to go to a file;
if i want it to interact with other log files, I need some common keys.
htex_task_id is the obvious one there for task correlation. manager ID
is another.

To go to a file: lazy redirect of stdout to idris2interchange.log. This
could be done more seriously to avoid random prints going to the file
but this is a prototype so I don’t care.

Run it through jq for basic validation and haha its broken. I got con-
fused about JSON quotes vs Python style quotes. Various iterations of
jq vs formatting fixes to work towards jq believing this is valid.

That log escaping, which i implemented pretty quickly, seems to make
logging extremely slow - especially outputting the pickle stack which
is actually quite a big representation when it has a manager registration
with all my installed python packages in there. but hey thats what log
levels/log optionality is for.

Let’s do some scripting to figure out which of these lines is so expen-
sive - based on line length. one line is 49kb long! (its repeating the
full pickled task state rather than a task id!). and similar with manager
IDs. but this is probably the sort of changes I’ll be needing to make to
tie stuff in with other log files anyway.

This log volume has been a problem for me elsewhere, even without
structured logging, filling up eg my root filesystem with docker stdout
logs.

Now back to jq validation. . .

if i get that done. . . look for every logv call and report each one and
how many times it logged a value. this is in the direction of logging
metrics, without actually being that.

a pytest run now give 92000 idris2interchange log lines.

and now jq accepts it all.

so lets see if parsl.obserability.load_jsons can load it. it can, without
further change.

20 Chapter 3. Generating wide records

Wide event observability prototype report

logs that have a v:

Next step is to figure out how task processing can be annotated to fit
into the general task flow findcommon style output. Let’s start with a
single line such as this without trying to add any broader context.

Make a new logv that lets the v field be named. That allows a single
association to be made. which is ok for this stage.

First lets format that task ID properly, without ‘PickleInteger’ in the
value.

so now log records look like this:

which I hope is enough to align with the rest of findcommon.

So add in an import for this log into getlogs and try it out:

and there it is.

Next, I’d like to get more in here. Specifically of interest for observ-
ability development is I’d like to get an event for the point where a task
message is received - even though at that point, its the beginning of a
span that we won’t know the task identity for until much later when
the payload has been depickled and the task_id extracted.

The approach is probably something like a two parter: - make some
span concept that has identities for all of its messages - tie that span to
a task ID so that all its lines can get an htex_task_id widened on

This is an example of sending a join back in time. and an example of
having to have the definition somewhere that these things are related
- but that it doesn’t have to be in the logging code where we prefer
to be fast and stateless. Also a library call that finds an htex task id
on any record of a group and widens out all the others to have the
same id: look for “these keys” in groups identified by “these keys”
and make them global. (`widen_implication` or some functional-
dependency related name?). in this case, for the interchange log file,
`submit_pass_id` => `htex_task_id`, or if doing so at a higher
level `(dfk,executor,submit_pass_id)=>htex_task_id`

TODO: show task1 output before join. then implement join and show

3.4. Adventure: adding observability to a prototype:
idris2interchange

21

Wide event observability prototype report

task1 output with the rest of the decode span in there - the deserialisa-
tion of the task and execution of the matchmaker is shown now.

TODO: add in result handling span in the same way.

widening submit_pass_id using key implication widening after load-
ing/processing all the logs normally, which is what I’d expect if
adding in ad-hoc hack stuff outside of the core parsl log loaders. . .
has revealed some fixpoint related stuff: widening to htex_task_id
which is the actual known ID isn’t sufficient because the widening
of htex_task_id to parsl_task_id already happened. I can widen to
parsl_task_id OK because that implication has happened on the two
log lines that already have an htex task ID. Is that ok in general? do
I need fixpoints in general? something to keep an eye on. I think:
as long as there is one record to convey the join as having happened,
then a subsequent join can flesh that out. but if the join involves facts
that aren’t represented incrementally like that, then no. probably I can
contrive some examples.

3.5 Performance measurement of patch
stack on 2025-10-27

pip install -e . && parsl-perf --config parsl/tests/
→˓configs/htex_local.py --iterate=1,1,1,10000

Running parsl-perf with constant block sizes (to avoid queue length
speed changes):

master branch (165fdc5bf663ab7fd0d3ea7c2d8d177b02d731c5)
1139 tps

more-task-tied-logs: 1024

json-wide-log-records: 537

• but without initializing the JSONHandler: 1122

end of branch with all changes up to now: 385

22 Chapter 3. Generating wide records

Wide event observability prototype report

3.6 Idea: Parsl resource monitoring on a
host-wide basis

Ignore Parsl Monitoring per-task resource monitoring and do some-
thing else that generates similar observability records. This was al-
ways some disappointment with getting WQ resource monitoring into
the Parsl monitoring database: what exists there that could be im-
ported? Likewise, host-wide stuff doesn’t fit well into the current Parsl
Monitoring model but might fit better into an observability model.

3.7 Idea: worker node dmesg

especially for catching OOM Killer and other interesting kernel events
that affect processes without giving user-expected stack traces.

Is dmesg available to users on Aurora worker nodes?

mesg already outputs JSON, if run with the right parameter.

That should be an hour to prototype alongside workers. Cross refer-
ence host-wide process monitoring as thematically related.

3.8 Idea: automatic instrumentation

Projects like OpenTelemetry offer automatic instrumentation. that
would be interesting to experiment with here.

3.6. Idea: Parsl resource monitoring on a host-wide basis23

Wide event observability prototype report

24 Chapter 3. Generating wide records

CHAPTER

FOUR

MOVING WIDE RECORDS AROUND

notions of moving logs around to a place of analysis should not be
baked into the architecture. realtime options, file based options, . . .
- that is an area for experimentation (see Chronolog) and this work
should facilitate that rather than being prescriptive

4.1 comparison to parsl logging

also followed by Academy at time of writing

expectation is you send your debugging expert a tarball of logs for
them to pore over - this is extremely asynchronous but a very effective
way of moving those records around. it has relatively low effect on
performance behaviour: get the logs onto some filesystem while the
performance-critical bit is running, move them from there later on.

• poring over these logs “later” - there’s no need for those logs
to accumulate in real time in one place for post-facto analysis.
And in practice, when doing log analysis rather than monitor-
ing analysis, “send me a tarball of your runinfo” is a standard
technique.

async movement is much easier than synchronous/realtime movement

25

Wide event observability prototype report

4.2 comparison to parsl monitoring

The transmission model is real-time. Even with recent radio plugins,
the assumption is still that messages will arrive soon after being sent.

The almost-real-time data transmisison model is especially awkward
when combined with SQL: distributed system events will arrive at dif-
ferent times or in the original UDP model perhaps not at all, and the
“first” message that creates a task (for the purposes of the database)
might arrive after some secondary data that requires that primary key
to exist. yes, it’s nice for the SQL database to follow foreign key rules,
especially when looking at the data “afterwards” but that’s not realistic
for distributed unreliable events.

pluggable radios - inspiring following configurability model

radios are realtime.

list explicit radios that have been implemented in parsl.

4.3 Python Configurability

A soft start in Parsl is to let people opt into observability style logs
- with most performance hit coming from turning on json output, i
think, it doesn’t matter performance-wise too much about adding in
the extra stuff on log calls.

The current parsl stuff is not set up for arbitrary log configuration out-
side of the submit-side process: for example, the worker helpers don’t
do any log config at all and rely on their enclosing per-executor envi-
ronments to do it, which i think some do not.

htex interchange and worker logs have a hardcoded log config with a
single debug boolean.

I’d like to do something a bit more flexible than adding more parame-
ters, that reflect that in the future people might want to configure their
handlers differently rather than using the JSONHandler.

26 Chapter 4. Moving wide records around

Wide event observability prototype report

eg. chronolog. pytest metrics observation in other section.

see Parsl monitoring radios configuration model. start prototyping
that. note that it doesn’t magically make arbitrary components that
aren’t compliant+Python redirectable. but thats fine in the modular
approach.

see the existing initialize_logging which allows arbitrary user config-
urability at the submit-process side, by getting parsl completely out of
the way and allowing the user to run whatever code they want.

4.4 Adventure: Wide records stored as
JSON in files

This prototype stores Parsl logs that have been sent into the Python
logging system as JSON objects, one per line.

This is one of the initial usecases for above configurability.

This was implemented is a straightforward Python logging Handler
similar to the existing log handlers, the difference being how the output
line is formatted.

The files are then moveable using traditional means: for exmaple, the
classic “send me a tarball of your run directory”.

4.5 Moving in realtime

What does realtime mean in this case? mostly a case of what do the
ultimate consumers need, rather than any strong technical definition at
this stage.

Inside Python parts of Parsl, this data is available in realtime at the
point of logging as it goes to whatever LogHandler is running in each
python process. that isn’t true in general on the “event model” side of
things, though.

4.4. Adventure: Wide records stored as JSON in files 27

Wide event observability prototype report

Parsl already moves some event stuff around the network in realtime:
that is the purpose of the monitoring radio system.

following two sections, octopus and chronolog, will talk about doing
that.

My initial log-related work was post-facto: copy log files around. but
there are plenty of mechanisms that should be able to deliver and anal-
yse live, eg built around Diaspora Octopus

4.6 Adventure: Diaspora Octopus

This is an obvious follow-on to file-based JSON logs: the developers
still kinda exist, and are friendly.

with Ryan and Haochen

This turned into a monster debugging and restructuring session around
Octopus reliability.

Ryan has a specific use case he’s trying to implement, that I am helping
him with:

i mostly want to know when my agents perform their loop
so i can hackily use this as a heartbeat to determine if my
agents alive, and, when the agent decides to call the llm,
i want to know the outcome of that call

—Ryan, on Slack

4.7 Idea: Chronolog

Nishchay did some stuff here. I don’t know what the state is.

https://grc.iit.edu/research/projects/chronolog/

28 Chapter 4. Moving wide records around

https://grc.iit.edu/research/projects/chronolog/

Wide event observability prototype report

4.8 Adventure: pytest observing inter-
change variables

pytest htex task priority test wants to wait for interchange to have all
the submitted tasks - which happens asynchronously to submit calls
returning. it does that by logfile parsing. how does that fit into this
observability story: there’s a metric in my prototype for this value
(which I used in one of the other use cases here).

Can do this by re-parsing the interchange log value. also could (with
suitable configuration) attach a “pytest can see only metrics” log writer
that runs over a unix socket? in some sense, injecting the relevant ob-
servability path into the interchange code as a configured log handler.
that gives some motivation for the configurability section.

Also attaching a JSON log file to the interchange, and having a tail
reader of that. also needs special configuration of interchange I think.

4.9 Adventure: Academy agents can re-
port their own relevant logs via ac-
tion

A prototype I made for Logan, and also showed to Ryan.

This ties in with Ryan’s Diaspora use case for examining what indi-
vidual agents are up to.

4.8. Adventure: pytest observing interchange variables29

Wide event observability prototype report

30 Chapter 4. Moving wide records around

CHAPTER

FIVE

ANALYSING WIDE RECORDS

at small enough scale, parsing logs into a python session and using
e.g. set and list comprehensions is a legitimate way to analyse things
(rather than something awkwardly shameful that will be replaced by
The Real Thing later) - especially given Parsl users general exposure
to data science in Python.

5.1 Visualization for task prioritisation

(two graphs that are already in parsl-visualize but probably-buggy -
see #4021)

this uses replay-monitoring.db approach with no runtime changes. be-
cause the work I did there was in parsl master, but I want to do custom
visualizations.

[TODO: link to blog post]

work towards a second blog post here. now most of the mechanics are
worked out.

Step 2 of that: This was a second requirement on prioritisation from
DESC.

use an A->B1/B2->C three step diamond-dag because its a bit less
trivial.

31

Wide event observability prototype report

visualization of task types for jim’s follow on question: how can we
adapt step 1 to colour by app name? It’s not well presented in parsl-
visualize because that focuses on state transitions rather than on app
identity as the primary colour-key.

Visualisation also coloured by task-chain/task-cluster to show a cluster
based visualization.

priority modes: natural (submit-to-htex order, “as unblocked” order),
random (priority=random.random()), chain priority by chain depth,
chain priority by cluster. the last two should be “the same” in plot
4 i hope. unclear what random mode will do, if anything? i guess
get more later-unlocked tasks randomly in there? random is always
interesting to me as pushing things away from degenerate cases - i this
case “Cs run last”

plot 1: task run/running_ended indivual tasks, coloured by parsl app
name plot 2: tasks of each of two kinds, coloured by parsl app name

plot 3: tasks running by type, with no priority, with two different pri-
ority schemes.

plot 4: Visualisation of end-result completed - i.e. how many C tasks
have completed over time, ignoring everything else about the inside.
with prioritisation and with my two prioritisation schemes.

Plot 4 should be the top level plot set - because it an example “goal” of
the prioritisation, I think. (might be because you want results sooner,
might be because C completing means you can delete a load of inter-
mediate temporary data sooner).

From an observability perspective: the task chain identity is not known
to Parsl. this is additional metadata, that in observability concepts, is
added on by a “higher level system” and joined on at analysis time. the
application knows about it, and the querier knows about it. none of the
intermediate execution or observability infrastructure knows about it.

1. the status table rerun gives runtimes for plotting based on Parsl
level dfk/task/try but doesn’t give any metadata about those.
such as app name. in SQL this is added on as a JOIN, and so it is
here too - rerun the tasks table as a sequence of log records - note

32 Chapter 5. Analysing wide records

Wide event observability prototype report

that they don’t have a notion of “created” here because they are
records but aren’t from a point in time, instead an already aggre-
gated set of information. don’t let that scare you. observability
records don’t have to look like the output of a printf!

5.2 Task flow logs through the whole
system

Here’s a use case that is hard with what exists in master-branch Parsl
right now.

I want to know, for a particular arbitrary task, the timings of the task as
it is submitted by the user workflow, flows through the DFK, into the
htex interchange, worker pool, executes on an htex worker, and flows
back to the user, with the timing of each step.

What exists in master Parsl right now is some information in monitor-
ing, and some information in log files. The monitoring information
is focused on the high level task model, not what is happening inside
Parsl to run that high level model. Logs as they exist now are extremely
ad-hoc, spread around in at least 4 different places, and poorly inte-
grated: for example, log messages sometimes do not contain context
about which task they refer to, do not represent that context uniformly
(e.g. in a greppable way) and are ambiguous about context (e.g. some
places refer to task 1, the DFK-level task 1, and some places refer to
task 1, the HTEX-level task 1, which could be something completely
different).

As a contrast, an example output of this prototype (as of 2025-10-26)
is:

=== About task 358 ===
2025-10-26 10:29:46.467298 MainThread@117098 Task␣
→˓358: will be sent to executor htex_Local (parsl.
→˓log)
2025-10-26 10:29:46.467412 MainThread@117098 Task␣

(continues on next page)

5.2. Task flow logs through the whole system 33

Wide event observability prototype report

(continued from previous page)

→˓358: Adding output dependencies (parsl.log)
2025-10-26 10:29:46.467484 MainThread@117098 Task␣
→˓358: Added output dependencies (parsl.log)
2025-10-26 10:29:46.467550 MainThread@117098 Task␣
→˓358: Gathering dependencies: start (parsl.log)
2025-10-26 10:29:46.467620 MainThread@117098 Task␣
→˓358: Gathering dependencies: end (parsl.log)
2025-10-26 10:29:46.467685 MainThread@117098 Task␣
→˓358: submitted for App random_uuid, not waiting␣
→˓on any dependency (parsl.log)
2025-10-26 10:29:46.467752 MainThread@117098 Task␣
→˓358: has AppFuture: <AppFuture at 0x7f8bc1aed730␣
→˓state=pending> (parsl.log)
2025-10-26 10:29:46.467818 MainThread@117098 Task␣
→˓358: initializing state to pending (parsl.log)
2025-10-26 10:29:46.469992 Task-Launch_0@117098␣
→˓Task 358: changing state from pending to launched␣
→˓(parsl.log)
2025-10-26 10:29:46.470113 Task-Launch_0@117098␣
→˓Task 358: try 0 launched on executor htex_Local␣
→˓with executor id 340 (parsl.log)
2025-10-26 10:29:46.470240 Task-Launch_0@117098␣
→˓Task 358: Standard out will not be redirected.␣
→˓(parsl.log)
2025-10-26 10:29:46.470310 Task-Launch_0@117098␣
→˓Task 358: Standard error will not be redirected.␣
→˓(parsl.log)
2025-10-26 10:29:46.470336 MainThread@117129 HTEX␣
→˓task 340: putting onto pending_task_queue␣
→˓(interchange log)
2025-10-26 10:29:46.470404 MainThread@117129 HTEX␣
→˓task 340: fetched task (interchange log)
2025-10-26 10:29:46.470815 Interchange-
→˓Communicator@117144 Putting HTEX task 340 into␣
→˓scheduler (Pool manager log)

(continues on next page)

34 Chapter 5. Analysing wide records

Wide event observability prototype report

(continued from previous page)

2025-10-26 10:29:46.471166 MainThread@117162 HTEX␣
→˓task 340: received executor task (Pool worker log)
2025-10-26 10:29:46.492449 MainThread@117162 HTEX␣
→˓task 340: Completed task (Pool worker log)
2025-10-26 10:29:46.492742 MainThread@117162 HTEX␣
→˓task 340: All processing finished for task (Pool␣
→˓worker log)
2025-10-26 10:29:46.493508 MainThread@117129 HTEX␣
→˓task 340: Manager b'4f65802901c6': Removing task␣
→˓from manager (interchange log)
2025-10-26 10:29:46.493948 HTEX-Result-Queue-
→˓Thread@117098 Task 358: changing state from␣
→˓launched to exec_done (parsl.log)
2025-10-26 10:29:46.494729 HTEX-Result-Queue-
→˓Thread@117098 Task 358: Standard out will not be␣
→˓redirected. (parsl.log)
2025-10-26 10:29:46.494905 HTEX-Result-Queue-
→˓Thread@117098 Task 358: Standard error will not␣
→˓be redirected. (parsl.log)

This integrates four log files and two task identifier systems into a sin-
gle sequence of events.

5.3 Algebra of rearranging and querying
wide events

widening

widen-by-constant: if we import a new log file but we know its broader
context some other way, perhaps because it came from a known direc-
tory inside a parsl rundir (eg work queue’s)

joining

post-facto relationship establishment

5.3. Algebra of rearranging and querying wide events 35

Wide event observability prototype report

relabelling - to make names align from multiple sources, or to add
distinction from multiple sources

look at relational algebra for phrasing and concepts

notion of identity and key-sequences: eg. parsl_dfk/parsl_task_id
is a globally unique identifier for a parsl task across time and
space, and so is parsl_dfk/executor_label/block_number or
parsl_dfk/executor_label/manager_id/worker_number – although
manager ID is also (in short form) globally unique. this is distinct
from the hierarchical relations between entities - although hierarchical
identity keys will often line up with execution hierarchy.

peter buneman XML keys stuff did nested sequences of keys for iden-
tifying xml fragments, c. year 2000

joins can send info back in time: if we have a span but don’t know
which parsl task it belongs to at the start, only later, we can use joins
to bring that information from the future.

5.3.1 keys imply key operator

[l_keys] implies [r_key] over [collection]:

• if any log selected by l_keys contains an r_key, that r_key is
unique (auto-check-that) and should be attached to every log
record selected by l_keys. Use case: widening the task recep-
tion span in idris2interchange to be labelled with htex_task_id

• this is functional dependency?

fixpoint notions that might need to be incorporated into the query
model in Python code (so that a fixpoint can be converged to across
non-local widening queries - see idris2interchange usecase notes)

Lots of different identifier spaces, loosely structured, not necessarily
hierarchical: for example, an htex task is not necessarily “inside” a
Parsl task, as htex can be used outside of a Parsl DFK (which is where
the notion of Parsl task lives). An htex task often runs in a unix pro-
cess but that process also runs many htex tasks, and an htex task also

36 Chapter 5. Analysing wide records

Wide event observability prototype report

has extent outside of that worker process: there’s no containment re-
lationship either way.

5.4 code for analysis

code that helps with analysis - eg implementing common code frag-
ments for graphs, queries, . . . ?

5.5 Adventure: Browser UI

What might a browser UI look like for this?

compare parsl-visualize. compare scrolling through logs, but with
some more interactivity (eg. click / choose “show me logs from same
dfk/task_id”)

But the parsl-visualize UI is so limited, it only has a handful of graphs
to recreate. And some of them do not make sense to me so I would
not recreate them.

I am not super excited about building UIs but it would probably be
interesting to build something simple that can do a few queries and
graphs to demonstrate log analysis in clickable form.

And then I could put in the analyses I have made (other graphs/reports)
too, and also have it work with academy logs right away. and be ready
to pull in other JSON log files as a more advanced implementation
motivating JSON/wide events.

Use python and matplotlib, no web-specific stuff, to promote people
who have done local scripting putting new plots into the UI, and pro-
mote using the graph code from the visualiser in own local scripting.

Make it able to address a whole collection of monitoring.db runs at
once - not only one chosen workflow.

Use a parsl-aware list of quasi-hierarchical key names to drive narrow-
down UI:

5.4. code for analysis 37

Wide event observability prototype report

eg: pick dfk. pick: parsl task, parsl try, or executor, then executor task,
or executor then block then task.

htex instance/block/manager/worker/htex_task

htex instance/block/manager/worker is an execution location - how an
htex instance is identified is different between real Parsl and GC: in
real parsl, its a dfk id/executor label.

are all graphs relevant for all key selections? or should eg. a block
duration/count graph only appear in certain situations? eg if we’ve
focused on one task-try, does that mean. . . no block status info and
so no block graph? graphs could be enabled by: “if you see records
like this, this graph is relevant”. That would allow eg. enabling htex
or WQ specific plots if we see (with more merged info) some htex or
WQ specific data. If we only see academy or GC logs, should only
report about them.

Recreate block vs task count graph from Matthews paper.

Aim for first iteration to work against current monitoring.db format so
it can be tried out in a separate install against production runs, distinct
from all other observability work. Exensibility there right from the
start to allow that to extend for importing new data and plugging in
plots and reports about new data.

two obvious non-monitoring.db extensions: what’s happening with
managers in blocks. whats happening with work queue. these are both
executor specific, and don’t fit the monitoring.db schema so well. so
clear demos of what could be done better.

5.5.1 Idea: Streaming-fold web UI

what operators can be build with a streaming-fold? to give live updates
as logs come in. (eg tail from a filesystem in the simplest case)

joins are the hard bit there, I think - but a fundep operator is at least
constrained in its behaviour: cache keyed-but-unjoined blocks, if we
see a key record, emit the whole block and forget it.

spend 1 day prototyping this.

38 Chapter 5. Analysing wide records

Wide event observability prototype report

counters, lists, a few graph types, drop downs/select fields

5.6 python side query model

log entries by reference (in lists and dicts). deliberately mutating the
only copy of a log record, stored across multiple structs, is a feature
not a bug. lets us select and modify and then return to the original
structure. avoids copying the actual log records ever (except when
explicit) and instead deal in object references.

use comprehension-style query notation to be reminiscent of other
query languages.

5.7 academy visualization

message diagram - include here - for multi agent generator example I
made for Logan.

5.8 HTEX vs WQ questions

Some questions don’t make sense outside of the fixed worker count
model. That is the htex tradition, but htex MPI mode has moved away
from that with tasks able to request arbitrary amounts of some resource
(mpi ranks) and WQ is heavily built around that too - DESC applica-
tions commonly use memory rather than core count as their resource
constrained on a node. It is a feature, not a bug, that these features are
different across executors.

5.6. python side query model 39

Wide event observability prototype report

5.9 Other record storage systems

SQLite - I experimented with this as part of my earlier DNPC work,
using SQL as a query language.

5.10 type checking event schemas

there is no observability schema overall, but individual components
will have definitions which may be formal or informal. so it might be
useful to be able to perform type checking on output records.

there can be type-checking/linting gradual type check of emitted
events though: a couple of places:

• generate the extras by helper functions that force the record have
certain fields (which should be referred to in the generating logs
section)

• linting rules about x implies y, that can be regarded as hard type
checking rules or soft rules depending on how you invoke such
a tool

5.11 Write out json logs (or other for-
mats) after performing query work

[for the query language section]

because maybe you’ve got somewhere better to process these results
than the Python runtime.

or maybe you processed them somewhere that wasn’t python and now
want them in Python. JSON as the interface layer.

40 Chapter 5. Analysing wide records

CHAPTER

SIX

ADVENTURE: ACADEMY VS GLOBUS
COMPUTE

This isn’t well documented in general and I feel like logging is espe-
cially neglected (although only part of the complexity here: code de-
ployment is another part.) So I will work on bashing the two together
with a hostile commentary.

6.1 getting started

Built cloudlump docker image for me to run locally to keep my de-
ployments isolated from each other and from my home directory, to
force me to be a bit more explicit about how to get things to work.

This is enough to start a GC endpoint in one container and then run
assert gcs.Executor().submit(abs, -7).result() == 7

>>> import globus_compute_sdk as s
>>> e=s.Executor(endpoint_id='5c7202b5-d022-4534-
→˓a399-21d4356129be')
>>> # authorization happens here
>>> assert e.submit(abs, -7).result() == 7

In this environment, the only task ref-
erence is in ~/.globus_compute/uep.

41

Wide event observability prototype report

5c7202b5-d022-4534-a399-21d4356129be.
bac77271-9a60-cad7-c4e9-0eb689ddf4d1/
GlobusComputeEngine-HighThroughputExecutor/block-0/
beb8bc8bb003/worker_0.log using htex task numbers. This is
not correlated with anything visible on the submit side – which is a
UUID globus compute task ID:

>>> f=e.submit(abs, -8)
>>> f.task_id
'8b3da38f-f889-4ae1-8d31-68ff2f830876'

Suggestion: how to correlate GC task IDs with htex task IDs. Note
that htex task IDs are not unique within the endpoint directory because
multiple HTEXs (over time) log into the same directory.

block IDs are also not unique because of the above log directory con-
flation.

Parsl work with extra debug info is likely to give more task information
here, but all stil correlated by htex task ID, which as mentioned above,
is not even unique within an endpoint.

6.2 Launching an academy agent

There are no academy agents defined by default in an Academy install.
If I manually define one in my submit container (in a disposable place,
not shared), what happens when I try to launch it?

This works to a remote endpoint, from one cloudlump container to
another, which surprises me a bit because the MyAgent code must be
being conveyed by some bowels of GC serialization. . .

import asyncio
import globus_compute_sdk as gc
import academy.agent as aa
import academy.manager as am
import academy.exchange as ae

(continues on next page)

42 Chapter 6. Adventure: Academy vs Globus Compute

Wide event observability prototype report

(continued from previous page)

import concurrent.futures as cf

print("importing myagent main")

class MyAgent(aa.Agent):
@aa.action
async def seven(self):

print(f"something for stdout from MyAgent
→˓{self!r}")

import os
return (7, os.getpid(), os.uname())

if __name__ == "__main__":

async def main():
async with await am.Manager.from_exchange_

→˓factory(factory=ae.HttpExchangeFactory(auth_
→˓method='globus', url="https://exchange.academy-
→˓agents.org"), executors = cf.
→˓ProcessPoolExecutor()) as m:

async with await am.Manager.from_exchange_
→˓factory(factory=ae.HttpExchangeFactory(auth_
→˓method='globus', url="https://exchange.academy-
→˓agents.org"), executors = gc.Executor(endpoint_id=
→˓'5c7202b5-d022-4534-a399-21d4356129be')) as m:

print(f"with manager {m}")
h = await m.launch(MyAgent())
print(f"launched agent with handle {h}")
s = await h.seven()
print(f"agent seven result is {s}")
assert s[0] == 7

asyncio.run(main())

but if I put the agent in its own agentcode.py module, then I get a
remote deserialization error:

6.2. Launching an academy agent 43

Wide event observability prototype report

...
File "/venv/lib/python3.13/site-packages/dill/_dill.
→˓py", line 452, in load

obj = StockUnpickler.load(self)
File "/venv/lib/python3.13/site-packages/dill/_dill.
→˓py", line 442, in find_class
return StockUnpickler.find_class(self, module,␣

→˓name)
~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^

→˓^^^
ModuleNotFoundError: No module named 'agentcode'

which is consistent: in the first example, dill is used to convey the
definitions; in the second case, pickle thinks it can do an import and
so never gets to the point of dill conveying the definitions.

6.3 Looking at GC-endpoint-side
academy logs

For example, I want to see the agent action invocations. There are two
paths here I might expect:

• some kind of endpoint/worker level as the academy docs suggest
running as a worker initialization in the process worker pool.
GC workers (and indeed, HTEX workers) don’t have a config-
uration interface that supports that well, although in pure this
observability project is working towards that – see the config-
urability section nearer the start. I might expect that as part of
general observability of the whole system rather than hoping that
the other components are themselves separately debuggable.

agent-level log routing: start something at agent start, shut it down at
agent end. There are two existing approaches:

• I’ve prototyped making agents able to capture “their own” logs
and report them via an agent action. I prototyped this with Lo-

44 Chapter 6. Adventure: Academy vs Globus Compute



Wide event observability prototype report

gan, and mentioned it elsewhere in this report.

• Alok added an initialize logging feature to manager launching
of agents to insert a log file capture. There is no facility there
for conveying the log file anywhere else.

These different approaches are not contradictory: the Python logging
mechanism can cope with multiple log handlers.

A goal: I want to look at agent activity - logs or visualization? - of
stuff on the submit side and the remote side.

For example: I want to run my fibonacci agent test and see the agent
logging its internal state as it changes, as well as seeing the client re-
porting what it sees.

I should be able to use multiple approaches to demonstrate how these
events can be retrieved and give the same (or similar) output on the
analysis side, and the differences in characteristics of the approach
would be interesting to comment on - with the logging and analysis
code the same for all event-movement approaches.

6.3. Looking at GC-endpoint-side academy logs 45



Wide event observability prototype report

46 Chapter 6. Adventure: Academy vs Globus Compute



CHAPTER

SEVEN

THE REST

7.1 Debugging monitoring performance
as part of developing this prototype

findcommon tool - finds common task sequence for templated logs and
outputs their sequence, like this:

First run parsl-perf like this:

parsl-perf --config parsl/tests/configs/htex_local.
→˓py

[...]

==== Iteration 3 ====
Will run 58179 tasks to target 120 seconds runtime
Submitting tasks / invoking apps
All 58179 tasks submitted ... waiting for completion
Submission took 103.880 seconds = 560.059 tasks/
→˓second
Runtime: actual 137.225s vs target 120s
Tasks per second: 423.967
Tests complete - leaving DFK block

which executes a total around 60000 tasks.

47



Wide event observability prototype report

First, note that this prototype benchmarks on my laptop significantly
slower than the contemperaneous master branch, at .

That’s perhaps unsurprising: this benchmark is incredibly log sensis-
tive, as my previous posts have noted - TODO: link to blog post and
to R-performance report) - around 900 tasks per second on a 120 sec-
ond benchmark. And this prototype adds a lot of log output. Part of
the path to productionisation would be understanding and constraining
this.

From that output above, it is clear that the submission loop is taking
a long time: 100 seconds. With about 35 seconds of execution hap-
pening afterwards. The Parsl core should be able to process task sub-
missions much faster than 560 tasks per seconds. So what’s taking up
time there?

Run findcommon (a could-be-modular-but-isn’t helper from this ob-
servability prototype) on the result:

0.0: Task %s: will be sent to executor htex_local
0.00023320618468031343: Task %s: Adding output␣
→˓dependencies
0.0004515730863634116: Task %s: Added output␣
→˓dependencies
0.000672943356177761: Task %s: Gathering␣
→˓dependencies: start
0.0008952160973877195: Task %s: Gathering␣
→˓dependencies: end
0.0011054732824941516: Task %s: submitted for App␣
→˓app, not waiting on any dependency
0.001316777690507145: Task %s: has AppFuture: %s
0.0015680651123983979: Task %s: initializing state␣
→˓to pending
23.684763520758917: HTEX task %s: putting onto␣
→˓pending_task_queue
23.68483662049256: HTEX task %s: fetched task
23.684863335335613: Task %s: changing state from␣
→˓pending to launched

(continues on next page)

48 Chapter 7. The rest



Wide event observability prototype report

(continued from previous page)

23.6850573607536: Task %s: try %s launched on␣
→˓executor %s with executor id %s
23.685248910492184: Task %s: Standard out will not␣
→˓be redirected.
23.685424046734745: Task %s: Standard error will␣
→˓not be redirected.
23.686276226995773: Putting HTEX task %s into␣
→˓scheduler
23.686777094898495: HTEX task %s: received executor␣
→˓task
23.687025900194147: HTEX task %s: Completed task
23.687268549254735: HTEX task %s: All processing␣
→˓finished for task
23.687837933843614: HTEX task %s: Manager %r:␣
→˓Removing task from manager
23.688483699079185: Task %s: changing state from␣
→˓launched to exec_done

In this stylised synthetic task trace, a task takes an average of 23 sec-
onds to go from the first event (choosing executor) to the final mark
as done. That’s fairly consistent with the parsl-perf output - I would
expect the average here to be around half the time of parsl-perf’s sub-
mission time to completion time (30 seconds).

What’s useful with findcommon’s output is that it shows the insides of
Parsl’s working in more depth: 20 states instead of parsl-perf’s start,
submitted, end. And the potential exists to calculate other statistics on
these events.

So in this average case, there’s something slow happening between
setting the task to pending, and then the task “simultaneously” being
marked as launched on the submit side and the interchange receiving
it and placing it in the pending task queue.

That’s a bit surprising - tasks are meant to accumulate in the inter-
change, not before the interchange.

So let’s perform some deeper investigations – observability is for Se-

7.1. Debugging monitoring performance as part of
developing this prototype

49



Wide event observability prototype report

rious Investigators and so it is fine to be hacking on the Parsl source
code to understand this more. (by hacking, I mean making temporary
changes for the investigation that likely will be thrown away rather than
integrated into master).

Let’s flesh out the whole submission process with some more log lines.
On the DFK side, that’s pretty straightforward: the observability pro-
totype has a per-task logger which, if you have the task record, will
attach log messages to the task.

For example, here’s the changes to add a log around the first call to
launch_if_ready, which is probably the call that is launching the task.

+ task_logger.debug("TMP: dependencies added,␣
→˓calling launch_if_ready")

self.launch_if_ready(task_record)
+ task_logger.debug("TMP: launch_if_ready returned
→˓")

My suspicion is that this is around the htex submission queues, with a
secondary submission around the launch executor, so to start with I’m
going to add more logging around that.

Then rerun parsl-perf and findcommon, without modifying either, and
it turns out to be that secondary submission, the launch executor:

0.0020453477688227: Task %s: TMP: submitted into␣
→˓launch pool executor
0.002256870306434224: Task %s: TMP: launch_if_ready␣
→˓returned
14.073021359217009: Task %s: TMP: before submitter␣
→˓lock
[...]
14.078550367412324: Task %s: changing state from␣
→˓launched to exec_done

Don’t worry too much about the final time (14s) changing from 23s
in the earlier run – that’s a characteristic of parsl-perf batch sizes that
I’m working on in another branch.

50 Chapter 7. The rest



Wide event observability prototype report

If that’s the case, I’d expect the thread pool executor, previously much
faster than htex, to show similar characteristics:

surprisingly, though although the throughput is not much much
higher. . . the trace looks very different timewise. the bulk of the time
here still happens at the same place, there isn’t so much waiting there
- less than a second on average. That’s possibly because the execu-
tor can get through tasks much faster so the queue doesn’t build up so
much?

==== Iteration 2 ====
Will run 68976 tasks to target 120 seconds runtime
Submitting tasks / invoking apps
All 68976 tasks submitted ... waiting for completion
Submission took 117.915 seconds = 584.965 tasks/
→˓second
Runtime: actual 118.417s vs target 120s
Tasks per second: 582.485

0.0: Task %s: will be sent to executor threads
0.00014157412110423425: Task %s: Adding output␣
→˓dependencies
0.0002898652725047201: Task %s: Added output␣
→˓dependencies
0.000425118042214259: Task %s: Gathering␣
→˓dependencies: start
0.0005696294991521399: Task %s: Gathering␣
→˓dependencies: end
0.0006999648174108608: Task %s: submitted for App␣
→˓app, not waiting on any dependency
0.0008433702196425292: Task %s: has AppFuture: %s
0.0010710284919573986: Task %s: initializing state␣
→˓to pending
0.0011652027385929428: Task %s: TMP: dependencies␣
→˓added, calling launch_if_ready
0.0012973675719411494: Task %s: submitting into␣
→˓launch pool executor

(continues on next page)

7.1. Debugging monitoring performance as part of
developing this prototype

51



Wide event observability prototype report

(continued from previous page)

0.0014397921284467212: Task %s: submitted into␣
→˓launch pool executor
0.0015767665501452072: Task %s: TMP: launch_if_
→˓ready returned
0.3143575128217656: Task %s: before submitter lock
0.31448896150771743: Task %s: after submitter lock,␣
→˓before executor.submit
0.3146383380777917: Task %s: after before executor.
→˓submit
0.3147926810507091: Task %s: changing state from␣
→˓pending to launched
0.3149239369413048: Task %s: try 0 launched on␣
→˓executor threads
0.31504996538376506: Task %s: Standard out will not␣
→˓be redirected.
0.31504996538376506: Task %s: Standard out will not␣
→˓be redirected.
0.3151759985402679: Task %s: Standard error will␣
→˓not be redirected.
0.3151759985402679: Task %s: Standard error will␣
→˓not be redirected.
0.315319734920821: Task %s: changing state from␣
→˓launched to exec_done

So maybe I can do some graphing of events to give more insight than
these averages are showing. A favourite of mine from previous mon-
itoring work is how many tasks are in each state at each moment in
time. I’ll have to implement that for this observability prototype, be-
cause it’s not done already, but once it’s done it should be reusable.
and it should share most infrastructure with findcommon. Especially
relevant is discovering where bottlenecks are: it looks like this is a
parsl-affecting performance regression that might be keeping workers
idle. For example, we could ask: does the interchange have “enough”
tasks at all times to keep dispatching. With 8 cores on my laptop, I’d
like it to have at least 8 tasks or so inside htex at any one time, but
this looks like it might not be true. Hopefully graphing will reveal

52 Chapter 7. The rest



Wide event observability prototype report

more. It’s also important to note that this findcommon output shows
latency, not throughput – though high latency at particular points is an
indication of throughput problems.

Or, I can look at how many tasks are in the interchange over time: there
either is, or straightforwardly can be, a log line for that. That will fit
a different model to the above log lines which are per-task. Instead
they’re a metric on the state of one thing only: the interchange. of
which there is only one, at least for the purposes of this investigation.

Add a new log line like this into the interchange at a suitable point
(after task queueing, for example):

+ ql = len(self.pending_task_queue)
+ logger.info(f"TMP: there are {ql} tasks in the␣
→˓pending task queue", extra={"metric": "pending_
→˓task_queue_length", "queued_tasks": ql})

Now can either look through the logs by hand to manually see the
value. Or extract it programmatically and plot it with matplotlib, in an
ad-hoc script:

import matplotlib.pyplot as plt
from parsl.observability.getlogs import getlogs

logs = getlogs()

# looking for these logs:
# "metric": "pending_task_queue_length", "queued_
→˓tasks": ql})

metrics = [(float(l['created']), int(l['queued_tasks
→˓']))

for l in logs
if 'metric' in l
and l['metric'] == "pending_task_queue_

→˓length"
]

(continues on next page)

7.1. Debugging monitoring performance as part of
developing this prototype

53



Wide event observability prototype report

(continued from previous page)

plt.scatter(x=[m[0] for m in metrics],
y=[m[1] for m in metrics])

plt.show()

and indeed that shows that the interchange queue length almost never
goes above length 1, and never above length 10.

That’s enough for now, but it’s a usecase that shows partially under-
standing throughput: we can see from this observability data that the
conceptual 50000 task queue that begins in parsl-perf as a for-loop
doesn’t progress fast enough to the interchange internal queue, and
so probably performance effort should probably be focused on under-
standing and improving the code path around launch and getting into
the interchange queue. With an almost empty interchange queue, any-
thing happening on the worker side is probably not too relevant, at
least for that parsl-perf use case.

This “understand the queue lengths (or implicit queue lengths) towards
execution” investigation style has been useful in understanding Parsl
performance limitations in the past.

7.2 See also

NetLogger - https://dst.lbl.gov/publications/NetLogger.tech-report.
pdf

my dnpc work, an earlier iteration of this. more focused on human log
parsing and so very fragile in the face of improving log messages, and
not enough context in the human component.

syslog, systemd logging, linux kernel ringbuffer/dmesg

buneman xml keys (mentioned above, c.2000)

54 Chapter 7. The rest

https://dst.lbl.gov/publications/NetLogger.tech-report.pdf
https://dst.lbl.gov/publications/NetLogger.tech-report.pdf


Wide event observability prototype report

microsoft power bi: As a simple example of how do we get this data
into something actually novel for academia. Dashboard friendly.

7.3 wheres the bottleneck - visualization

based on template analysis - but could be based on anything that can
be grouped and identified.

7.4 Review of changes made so far to
Parsl and Academy

This should be part of understanding what sort of code changes I am
proposing.

7.5 Applying this approach for academy

As an extreme “data might not be there” – perhaps Parsl isn’t there at
all. What does this code and these techniques look like applied to a
similar but very different codebase, Academy, which doesn’t have any
distributed monitoring at all at the moment. There are ~100 log lines
in the academy codebase right now. How much can this be converted
in a few hours, and then analysed in similar ways?

The point here being both considering this as a real logging direction
for academy, and as a proof-of-generality beyond Parsl.

thoughts:

academy logging so far focused on looking pretty on the console: eg
ANSI colour - that’s at the opposite end of the spectrum to what this
observability project is trying to log.

rule of thumb for initial conversion: whatever is substituted into the
human message should be added as an extras field.

7.3. wheres the bottleneck - visualization 55



Wide event observability prototype report

56 Chapter 7. The rest



CHAPTER

EIGHT

ACKNOWLEDGEMENTS

chronolog: nishchay, inna

desc: esp david adams, tom glanzman, jim chiang

uiuc: ved

gc: kevin

academy: alok, greg, logan

diaspora: Ryan, Haochen

parsl: matthew

57



Wide event observability prototype report

58 Chapter 8. Acknowledgements



INDEX

A
Adventure

Adding observability
to the idris2
interchange, 19

C
C programming language, 6
Chronolog, 26, 28
Cloudwatch, 10
colmena, 13
Configurability, 26
CZI, 2

D
DESC, 2
Diaspora

Octopus, 28
dmesg, 23
dnpc, 54

G
Globus Hosted Services

Diaspora, 28

H
High Throughput Executor

interchange, 19
Honeycomb, 10

I
idea

automatic
instrumentation,
23

Chronolog, 28
host-wide monitoring,

23
kernel events, 23
streaming-fold web UI,

38
idris2, 19

K
Kafka, 28

N
NetLogger, 54
NSF, 2

59



Wide event observability prototype report

O
observability, 1
Octopus, 28
OOM Killer, 23
OpenTelemetry, 10, 23

P
Parsl monitoring

database manager, 3
people

Haochen, 28
Nishchay, 28
Ryan, 28

Programming languages
C, 6
idris2, 19

pytest, 29
Python

Configurability, 26
logging, 6
pytest, 29

R
relational algebra, 36

S
SQLite, 40
syslog, 54

T
tool

jq, 20

W
web browser, 37
Work Queue, 15, 19

X
XML, 54

Z
ZMQ, 12

60 Index


	Introduction
	What exists in Parsl now?
	Diagram
	Concept: Universal personal logging
	Target audience
	Modularity
	Modularity as a requirement for a rich research landscape
	Hourglass model with several waists

	High level structure of this project

	The data model
	Introduction to wide events
	What exists now: Parsl python logs vs Parsl monitoring records
	Optional and missing data in observability
	Data types
	Distributed state machines - parsl issue #4021
	commercial observability vendors
	The argument for templating log messages
	Objects and spans
	Who allocates IDs and when
	Other components

	Generating wide records
	What exists now
	Parsl
	Academy

	New Python Code for log generation
	Python API on logging side
	anonymous/temporary identified python objects
	Contributed: Modifying academy to generate wide events

	Translating non-wide-event sources
	Using Parsl monitoring events as wide logs
	Using Work Queue transaction_log as a wide log source

	Adventure: adding observability to a prototype: idris2interchange
	Performance measurement of patch stack on 2025-10-27
	Idea: Parsl resource monitoring on a host-wide basis
	Idea: worker node dmesg
	Idea: automatic instrumentation

	Moving wide records around
	comparison to parsl logging
	comparison to parsl monitoring
	Python Configurability
	Adventure: Wide records stored as JSON in files
	Moving in realtime
	Adventure: Diaspora Octopus
	Idea: Chronolog
	Adventure: pytest observing interchange variables
	Adventure: Academy agents can report their own relevant logs via action

	Analysing wide records
	Visualization for task prioritisation
	Task flow logs through the whole system
	Algebra of rearranging and querying wide events
	keys imply key operator

	code for analysis
	Adventure: Browser UI
	Idea: Streaming-fold web UI

	python side query model
	academy visualization
	HTEX vs WQ questions
	Other record storage systems
	type checking event schemas
	Write out json logs (or other formats) after performing query work

	Adventure: Academy vs Globus Compute
	getting started
	Launching an academy agent
	Looking at GC-endpoint-side academy logs

	The rest
	Debugging monitoring performance as part of developing this prototype
	See also
	wheres the bottleneck - visualization
	Review of changes made so far to Parsl and Academy
	Applying this approach for academy

	Acknowledgements
	Index

